首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Packets with variable-sized payloads between 48 and 384 bytes, depending upon the number of payload wavelengths and their duration, are simultaneously routed in an implemented 12/spl times/12 optical packet switching network with bit-error rates better than 10/sup -12/. Payloads with varying offsets within the 25.6-ns timeslot are routed successfully as well, illustrating the flexibility and transparency of the data vortex architecture to multiple packet formats.  相似文献   

2.
An optical packet switch based on WDM technologies   总被引:6,自引:0,他引:6  
Dense wavelength-division multiplexing (DWDM) technology offers tremendous transmission capacity in optical fiber communications. However, switching and routing capacity lags behind the transmission capacity, since most of today's packet switches and routers are implemented using slower electronic components. Optical packet switches are one of the potential candidates to improve switching capacity to be comparable with optical transmission capacity. In this paper, we present an optically transparent asynchronous transfer mode (OPATM) switch that consists of a photonic front-end processor and a WDM switching fabric. A WDM loop memory is deployed as a multiported shared memory in the switching fabric. The photonic front-end processor performs the cell delineation, VPI/VCI overwriting, and cell synchronization functions in the optical domain under the control of electronic signals. The WDM switching fabric stores and forwards cells from each input port to one or more specific output ports determined by the electronic route controller. We have demonstrated with experiments the functions and capabilities of the front-end processor and the switching fabric at the header-processing rate of 2.5 Gb/s. Other than ATM, the switching architecture can be easily modified to apply to other types of fixed-length payload formats with different bit rates. Using this kind of photonic switch to route information, an optical network has the advantages of bit rate, wavelength, and signal-format transparencies. Within the transparency distance, the network is capable of handling a widely heterogeneous mix of traffic, including even analog signals.  相似文献   

3.
This paper presents the experimental results of the switching performances of the fast reconfigurable optical crosspoint switch (OXS) matrix. This paper demonstrates unicast optical packet switching for a 10-Gb/s payload at various modulation formats and a 155-Mb/s nonreturn-to-zero label. Reconfigurable time as fast as 2 ns is achieved because of the optimized control circuit and device fabrication. The power and wavelength dependence for the payload and the capability of multihop operation are investigated as well. The functionalities of the OXS acting as an optical switch and an optical buffer are demonstrated in the optical network node experiment. Very good switching property is obtained for the OXS, which clearly validates OXS as a potential technique for future high-speed Internet-protocol-over-wavelength-division-multiplexing networks.  相似文献   

4.
We report on the first demonstration of all-optical label switching (AOLS) with 160 Gb/s variable length packets and 10 Gb/s optical labels. This result demonstrates the transparency of AOLS techniques from previously demonstrated 2.5 Gb/s to this 160 Gb/s demonstration using a common routing and packet lookup framework. Packet forwarding/conversion, optical label erasure/re-write and signal regeneration at 160 Gb/s is achieved using a WDM Raman enhanced all-optical fiber cross-phase modulation wavelength converter. It is also experimentally shown that this technique enables packet unicast and multicast operation at 160 Gb/s. The packet bit-error-rate is measured for all optical label switched 16 /spl times/ 10 Gb/s channels and error free operation is demonstrated after both label swapping and packet forwarding.  相似文献   

5.
We propose and experimentally demonstrate the feasibility of a packet labeling technique using electronic code-division multiple-access for a wavelength-division-multiplexing (WDM) packet-based access network, whereby each wavelength is assigned a unique electronic code-based label on a radio-frequency subcarrier. Such a technique allows individual wavelength channels to be electronically identified without requiring the use of a WDM demultiplexer. We experimentally demonstrate this technique with two WDM channels each with 1.25-Gb/s payload data and 10-Mb/s header coded onto an electronic code at 160 Mb/s. The experimental results and theoretical analysis show that this technique has the potential to support large numbers of WDM channels.  相似文献   

6.
The transmission of coherent optical code division multiple access (OCDMA) traffic over optical-code-based optical packet switching (OPS) network has been proposed and successfully demonstrated in experiment. Full function of the OPS node has been successfully demonstrated in the experiment with coherent OCDMA traffic. A hybrid using planar lightwave circuit and superstructured fiber Bragg grating en/decoder for packet label and OCDMA-payload encoding/decoding has been verified as well. Error-free (<10/sup -12/) transmissions have been achieved for the 10- and 40-Gb/s payload data and up to two OCDMA channels.  相似文献   

7.
A 10-Gb/s burst-mode optical packet receiver module was fabricated. Its sensitivity was -24.8 dBm. Its sensitivity penalty due to packet-arrival timing jitter was less than 1.5 dB in arbitrary relative phase, and its total sensitivity penalty due to power fluctuation and packet-arrival timing jitter was less than 2.9 dB when the magnitude of packet-by-packet power fluctuation was 9 dB. We experimentally confirmed that our burst-mode optical packet receiver did not cause a penalty for wavelength division multiplexed (WDM) optical switching using the wavelength channel selector module.  相似文献   

8.
Approaches to optical Internet packet switching   总被引:11,自引:0,他引:11  
Wavelength-division multiplexing is currently being deployed in telecommunications networks in order to satisfy the increased demand for capacity brought about by the explosion in Internet use. The most widely accepted network evolution prediction is via an extension of these initial predominantly point-to-point deployments, with limited system functionalities, into highly interconnected networks supporting circuit-switched paths. While current applications of WDM focus on relatively static usage of individual wavelength channels, optical switching technologies enable fast dynamic allocation of WDM channels. The challenge involves combining the advantages of these relatively coarse-grained WDM techniques with emerging optical switching capabilities to yield a high-throughput optical platform directly underpinning next-generation networks. One alternative longer-term strategy for network evolution employs optical packet switching, providing greater flexibility, functionality, and granularity. This article reviews progress on the definition of optical packet switching and routing networks capable of providing end-to-end optical paths and/or connectionless transport. To date the approaches proposed predominantly use fixed-duration optical packets with lower-bit-rate headers to facilitate processing at the network-node interfaces. Thus, the major advances toward the goal of developing an extensive optical packet-switched layer employing fixed-length packets are summarized, but initial concepts on the support of variable-length IP-like optical packets are also introduced. Particular strategies implementing the crucial optical buffering function at the switching nodes are described, motivated by the network functionalities required within the optical packet layer  相似文献   

9.
Reconfigurable optical add/drop multiplexers (ROADMs) are able to provide flexible wavelength path provisioning in wavelength division multiplexing (WDM) networks. However, the capability of conventional ROADMs is limited to handling wavelength paths, and it does not support fine granularity in add/drop multiplexing of packets. Recently, we have proposed and demonstrated a packet-selective ROADM that combines an acoustooptic wavelength-tunable filter (AOTF) and an optical packet ADM (PADM) using optical code label processing. It provides more efficient utilization of wavelengths than conventional ROADMs. However, the bit rate of the demonstration was limited up to 10 Gbit/s. In this paper, we newly develop a label-selectivity-enhanced optical en/decoder, which allows the optical label recognition with 40-Gbit/s nonreturn-to-zero (NRZ) data packets, and a wide pass-band AOTF for 40-Gbit/s signals. Furthermore, we develop 640-Gbit/s throughput, packet-selective ROADM prototype, and demonstrate a field trial of granularity-flexible 3-node optical network over 173 km. error-free packet ADMs (error rate of under 10-12) for all 16-wavelength channels at all nodes are obtained.  相似文献   

10.
改进型双二进制归零码信号在标记交换系统中的新应用   总被引:6,自引:2,他引:4  
提出以改进型双二进制归零码(MD-RZ)信号作为标记,分别采用差分相移键控非归零码(NRZ-DPSK)信号和差分正交相移键控非归零码(NRZ-DQPSK)信号作为载荷进行正交调制的新方案.然后提出了一种从标记信号中提取和恢复时钟的简单方案.比较了背对背系统中2.5 Gbit/s的MD-RZ标记叠加到10 Gbit/s的NRZ-DPSK载荷和20 Gbit/s的NRZ-DQPSK载荷上的频谱特性,证明了MD-RZ标记占空比越大,光分组信号的频带利用率越高.采用传统的二进制强度调制-直接检测(IM-DD)系统的接收机检测得到了背对背系统中不同占空比的2.5 Gbit/s MD-RZ标记的眼图.结果表明,若采用色散补偿技术,两种光分组信号中的MD-RZ标记能够在长距离传输时克服接收端眼图的失真;当入纤功率值高于18 dBm时,占空比取值越大,MD-RZ标记的眼开度代价具有越高的传输鲁棒性.  相似文献   

11.
在波分复用(WDM)光网络中,可使用业务疏导(Traffic Grooming)技术来提高网络性能,降低网络成本.详细阐述了WDM光网络中业务疏导的基本概念及主要目标,并对国内外研究现状进行了总结.最后介绍了OPS光交换网络中使用的业务疏导技术.  相似文献   

12.
We discuss design considerations for wavelength division multiplexing (WDM)-based packet networks. In the near term, such networks are likely to consist of WDM links connected using some form of electronic multiplexing. The focus of this article is on the joint design of the electronic and optical layer with the objective of simplifying the network and reducing the protocol stack. To that end, we discuss the benefits of optical flow switching, network reconfiguration, traffic grooming, and optical layer protection. We also discuss the state of all-optical packet networking with particular focus on local area network technology  相似文献   

13.
Metro wavelength-division multiplexed (WDM) networks play an important role in the emerging Internet hierarchy; they interconnect the backbone WDM networks and the local-access networks. The current circuit-switched SONET/synchronous digital hierarchy (SDH)-over-WDM-ring metro networks are expected to become a serious bottleneck-the so-called metro gap-as they are faced with an increasing amount of bursty packet data traffic and quickly increasing bandwidths in the backbone networks and access networks. Innovative metro WDM networks that are highly efficient and able to handle variable-size packets are needed to alleviate the metro gap. In this paper, we study an arrayed-waveguide grating (AWG)-based single-hop WDM metro network. We analyze the photonic switching of variable-size packets with spatial wavelength reuse. We derive computationally efficient and accurate expressions for the network throughput and delay. Our extensive numerical investigations-based on our analytical results and simulations-reveal that spatial wavelength reuse is crucial for efficient photonic packet switching. In typical scenarios, spatial wavelength reuse increases the throughput by 60% while reducing the delay by 40%. Also, the throughput of our AWG-based network with spatial wavelength reuse is roughly 70% larger than the throughput of a comparable single-hop WDM network based on a passive star coupler (PSC).  相似文献   

14.
We propose a hybrid passive optical network (PON) consisting of a 2.5 Gb/s reflective semiconductor optical amplifier (RSOA)-based 32 channel loopback wavelength division multiplexing-passive optical network (WDM–PON) and a colorless OEO-based frame-level reach extender (RE). This hybrid PON is designed to support a 128-way split over a 50 km transmission distance per single wavelength channel. We experimentally demonstrate the feasibility of this design through downstream and upstream packet transmission with a commercial gigabit-capable PON (GPON) product. Even if the colorless frame-level RE uses active devices at the remote node, it is still possible to increase the optical link budget through backward compatibility with existing GPON products. This design also provides wavelength conversion and an upstream burst-to-continuous mode conversion between the WDM–PON and GPON. The proposed hybrid PON can satisfy a packet loss ratio (PLR) of 10?10 at the downstream and upstream transmission including the use of forward error correction (FEC).  相似文献   

15.
Reconfigurable optical add/drop multiplexers (ROADMs), which enable dynamic and flexible node-to-node connection via wavelength paths, are key components in metro ring network nodes. A data-granularity-flexible ROADM node that combines a wavelength-tunable filter, and an optical packet ADM (PADM) has been proposed and demonstrated. In this paper, the first field trial of the data-granularity-flexible ROADM network with wavelength- and packet-selective switch is demonstrated using a novel concurrent generation technique of address-reconfigurable optical-code (OC) labels and payload data. Bit error rates (BERs) of less than 10/sup -12/ for all 16-wavelength channels are obtained over 90 km of transmission at 10 Gb/s.  相似文献   

16.
In principle, an optical network employing wavelength routing, wavelength reuse, and multihop packet switching is modularly scalable to very large configurations in both the hardware and software sense. As such, it is a viable architecture for a new ATM-based telecommunications infrastructure The network architecture considered for a new, scalable, broadband telecommunications infrastructure is based on (1) the use of wavelength division multiplexing (WDM) and wavelength routing; (2) the translation of signals from one wavelength to another at the access stations; and (3) the use of multihop ATM packet switching. These principles permit networks to be built whose size is essentially unlimited  相似文献   

17.
In this paper, we will describe how semiconductor laser diode optical amplifiers/gates can be used in the photonic packet switching systems based on wavelength division multiplexed (WDM) techniques. First, we show that cross-gain modulation (XGM) can be suppressed when the device is used in the transparent condition of the waveguide material even when the input signal power exceeds +18 dBm. We then discuss an appropriate encoding for the optical signal. Experimental results show that high bit rate Manchester-encoding enables the use of semiconductor laser diode optical amplifiers/gates in the gain condition as well as the transparent condition. Finally, a new photonic packet receiver which utilizes a semiconductor laser diode optical amplifier as a packet power equalizer is proposed. This receiver accepts 17 dB power fluctuation at nanosecond speed for 10 Gb/s Manchester-encoded signal  相似文献   

18.
WDM packet routing for high-capacity data networks   总被引:3,自引:0,他引:3  
We present experimental and numerical studies of a novel packet-switch architecture, the data vortex, designed for large-scale photonic interconnections. The selfrouting multihop packet switch efficiently scales to large port counts (>10 k) while maintaining low latencies, a narrow latency distribution, and high throughput. To facilitate optical implementation, the data-vortex architecture employs a novel hierarchical topology, traffic control, and synchronous timing that act to reduce the necessary routing logic operations and buffering. As a result of this architecture, all routing decisions for the data packets are based on a single logic operation at each node. The routing is further simplified by the employment of wavelength division multiplexing (WDM)-encoded header bits, which enable packet-header processing by simple wavelength filtering. The packet payload remains in the optical domain as it propagates through the data-vortex switch fabric, exploiting the transparency and high bandwidths achievable in fiber optic transmission. In this paper, we discuss numerical simulations of the data-vortex performance and report results from an experimental investigation of multihop WDM packet routing in a recirculating test bed  相似文献   

19.
This paper introduces an approach to solving the fundamental scalability problem of all-optical packet switching wavelength-division multiplexing (WDM) access networks. Current optical networks cannot be scaled by simply adding nodes to existing systems due to the accumulation of insertion losses and/or the limited number of wavelengths. Scalability through bridging requires, on the other hand, the capability to switch packets among adjacent subnetworks on a wavelength basis. Such a solution is, however, not possible due to the unavailability of fast-switching wavelength sensitive devices. In this paper, we propose a scalable WDM access network architecture based on a recently proposed optical switching approach, termed photonic slot routing. According to this approach, entire slots, each carrying multiple packets (one on each wavelength) are “transparently” routed through the network as single units so that wavelength sensitive data flows can be handled using fast-switching wavelength nonsensitive devices based on proven technologies. The paper shows that the photonic slot routing technique can be successfully used to achieve statistical multiplexing of the optical bandwidth in the access network, thus providing a cost-effective solution to today's increasing bandwidth demand for data transmissions  相似文献   

20.
We developed novel network interfaces, for example 10 Gbit Ethernet to 80 Gbit/s optical-packet (10 GbitE–80 GbitOP) or 80 Gbit/s optical-packet to 10 Gbit Ethernet (80 GbitOP–10 GbitE) converters (collectively called as 10 GbitE/80 GbitOP converters), to connect optical packet switching (OPS) networks with IP technology-based networks. By using newly developed arrayed burst-mode optical packet transmitters/receivers together, the 10 GbitE–80 GbitOP converter at the ingress edge node of the OPS network encapsulates an IP packet into an $80(8lambdatimes 10) {rm Gbit/s}$ dense wavelength division multiplexing (DWDM)-based optical packets and generates an optical label based on a lookup table and the destination addresses of the IP packet. The 80 GbitOP–10 GbitE converter at the egress edge node decapsulates the IP packet from the optical packet and generates a 10 GbitE frame accommodating the IP packet according to a lookup table. By using these network interface devices and OPS system based on multiple optical label processing, we achieved, for the first time, 74-km single-mode fiber transmission, switching, and buffering of $80(8lambdatimes 10) {rm Gbit/s}$ DWDM-based optical packets encapsulating almost 10 Gbit/s IP packets with error-free operation (IP packet loss rate $≪ 10^{-6}$).   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号