首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Some meat products involve drying previously frozen pork meat, which makes the knowledge of sorption characteristics very important for the design and management of meat dehydration processes. The sorption isotherms of raw pork meat from the Biceps femoris and Semimembranosus muscles were determined at four temperatures: 25, 30, 35 and 40 °C. The experimental results were modelled using the GAB (Guggenheim, Anderson and De Boer) model. The effect of temperature was also taken into account to model the experimental sorption isotherms using four models (GAB, Oswin, Halsey and Henderson). The best results were provided by the GAB model. From the experimental sorption isotherms the isosteric heats of sorption were determined. For a moisture content higher than 0.15 kg water/kg dm, the isosteric heat of meat was similar to the latent heat of vaporization for pure water. For a lower moisture content, an increase in the isosteric heat was observed when the moisture content decreased.  相似文献   

2.
The desorption and adsorption equilibrium moisture isotherms of sorghum malt at the temperatures of 40 and 50 °C, over the water activity range of 0.1-0.9, were determined using the static gravimetric method. A non-linear regression programme was used to fit five moisture sorption isotherm models [Modified Henderson, Modified Chung-Pfost, Modified Guggenheim-Anderson-de Boer (GAB), Modified Halsey and Modified Oswin] to the experimental data. The models were compared using the standard error of estimate, mean relative percentage deviation, fraction explained variation and residual plots.The Modified Chung-Pfost model was found to be the best for predicting the desorption equilibrium moisture content, while the adsorption equilibrium moisture content was best predicted by the Modified Oswin model. The desorption and adsorption water activities were found to be best fitted by the Modified Oswin model.The moisture sorption isotherms were sigmoidal in shape and showed a marked effect of temperature. The span of the moisture sorption hysteresis loop formed, decreased with increase in temperature, while the size increased with increase in temperature.  相似文献   

3.
The sorption isotherms of blueberry variety O'Neil were determined at 20, 40 and 60 °C, for a range of water activity of 0.10–0.95. The isotherms showed that the equilibrium moisture content increased when temperature decreased at constant water activity. The BET, GAB, Halsey, Henderson, Caurie, Smith, Oswin and Iglesias-Chirife equations were tested for modelling the sorption isotherms. The results showed that GAB, BET and Halsey models gave the best fit quality for the experimental desorption data, and BET, Oswin and Henderson for adsorption data as suggested by the statistical tests employed. The net sorption heat was calculated using the Clausius–Clapeyron equation giving 38.62 kJ mol−1 (desorption) and 30.88 kJ mol−1 (adsorption) at a moisture content of 0.01 g water (g d.m.−1). Tsami equation was applied to estimate the net isosteric heat of sorption as function of equilibrium moisture content with satisfactory results.  相似文献   

4.
Moisture adsorption isotherms from a new biscuit considered as functional food were determined using a gravimetric static method at 25 and 40C and over a range of relative humidity from 0.112 to 0.903. The biscuit had 2.5, 3.3, 10.0 and 31.0% of ash, fiber, protein and fat, respectively, and 4.7% moisture content. The equilibrium moisture content of the biscuit (kg/kg) increased when the storage temperature at any given water activity ( A w) was reduced. The experimental data were analyzed using different models, namely Guggenheim–Anderson–de Boer (GAB) (three-parameter relationships), Henderson and Oswin (both models with two parameters), which exhibited a sigmoid shape at the studied temperatures. The maximum isosteric heat of sorption was 21.6 kJ/mol, which exponentially decreased when the moisture content was increased. The GAB model was found to be the most suitable for describing the adsorption characteristics at the temperature and A w range studied, according to the relative error and the coefficient determination.

PRACTICAL APPLICATIONS


This article describes the characterization of moisture adsorption behavior of a new biscuit considered as functional food. In general, the sorption behaviors of several foods have been studied extensively; nevertheless, a reduced number of published articles about biscuit sorption isotherms are found in the literature. The experimental data reported in this article may be important for the scientific community of the food science and technology. Isosteric heat of sorption is important for the determination of the binding strength of water to the food, as well as the amount of water present in the food.  相似文献   

5.
Modelling moisture sorption isotherms for maize flour   总被引:1,自引:0,他引:1  
The sorption isotherm of food material is pertinent in the processing and storage of food products. Adsorption and desorption isotherms for maize flour were investigated using the static gravimetric method over the range of temperature (27–40 °C) and water activity (aw) (0.10–0.80) commonly experienced in the tropical environment. The experimental data were compared with five widely recommended models in the literature for food sorption isotherms (GAB, modified GAB (MGAB), modified Oswin (MOE), modified Henderson (MHDE), and modified Chung–Pfost (MCE)). The GAB, MGAB, and MOE models were found to be acceptable in predicting the moisture sorption isotherms for maize flour. Overall, the MGAB appears to be most suitable for fitting the adsorption and desorption moisture isotherms data for the maize flour.  相似文献   

6.
The sorption isotherms of Oolong tea were determined at temperatures ranging from 5 to 50 °C. Estimated parameters and fitting ability for nine equilibrium relative humidity (ERH) models were evaluated. The modified Oswin equations were found to be an adequate model of three parameters to describe the sorption data. The Andrieu model was the only adequate model of four parameters. In comparing the results of this study with previously published data, it was found that the sorption properties were affected by species and manufacture techniques. The Guggenheim–Anderson–de Boer (GAB) model was not an adequate model as indicated by checking residual plots. The monolayer moisture content calculated from the Brunauer–Emmett–Teller (BET) model was lesser than that calculated from the GAB model. The errors of moisture content determined by measuring the ERH and temperature of samples was within 0.35%.  相似文献   

7.
The moisture sorption behaviour of curd (Indian yogurt) powder was studied at 20, 30, 40 and 50°C for water activity ranging from 0.07 to 0.85. GAB, BET, Henderson, Halsey, Chung & Pfost, Smith, Oswin and Peleg models were applied to analyse the data. Estimated parameters and fitting ability for sorption models were evaluated. The GAB model showed the best fit to the sorption data of curd powder at 20, 30 and 40°C, and the Peleg model fitted well at 50°C.  相似文献   

8.
Menkov ND 《Die Nahrung》2000,44(6):443-446
The equilibrium moisture contents in broad bean seeds were determined using the gravimetric static method at 5, 20, 40 and 60 degrees C over a range of water activities from 0.110 to 0.877. The sorption capacity of seeds decreased with the increase in temperature at constant water activity. Five models, modified Chung-Pfost, modified Halsey, modified Oswin, modified Henderson, and GAB (Guggenheim-Anderson-de Boer) equations, were applied to analyse the experimental data. The modified Oswin and GAB models were found to be the most suitable for describing the sorption isotherms.  相似文献   

9.
Lemon peel constitutes a potential source of dietary fiber to formulate new and healthier products, as well as a source of essential oils. The relationship between moisture content and water activity provides useful information for lemon peel processing, especially for drying and storage. Water sorption isotherms of lemon peel were obtained using a standardized conductivity hygrometer at four different temperatures (20, 30, 40 and 50 °C) and wide ranges of moisture content (5.381-0.002 kg water/kg dry solid) and water activity (0.984-0.106). One theoretical (GAB) and four empirical equations (Oswin, Henderson, Halsey and Ratti) were used for modelling sorption isotherms. After evaluating the models according to several criteria, the GAB model appeared as the best option. Isosteric heats of sorption were assessed from experimental sorption isotherm data using different methods.  相似文献   

10.
MOISTURE SORPTION STUDY ON NIGERIAN FOODS: MAIZE and SORGHUM   总被引:2,自引:0,他引:2  
Adsorption-desorption behavior of maize and sorghum between aw= 0.10–0.98 at temperatures of 20, 25 and 40C was studied. the grains exhibited type II sorption isotherm. the sorption data were analyzed using six sorption models and the coefficients of determination were between 0.6965–0.9994. the Caurie model gave the poorest fit and the Henderson model the best. Some models were better for adsorption than for desorption. the GAB and BET monolayer moisture contents were not significantly (p > 0.05) different. Monolayer values were temperature-dependent with activation energy from 1.36–10.08 MJ/mol and the maize monolayer values exhibited the highest sensitivity to temperature. Heat of sorption was obtained by applying Claussius-Clapeyron equation to the sorption isotherms at the three temperatures. the heat of sorption decreased with an increase in moisture content and an exponential equation was used to describe the relationship. the processing and storage consequences of this information were discussed.  相似文献   

11.
R.K. Vishwakarma  S.K. Nanda 《LWT》2011,44(4):969-975
Moisture adsorption isotherms of guar grain and guar gum splits were determined at 10, 20, 30 and 40 °C and 23-96% relative humidities using gravimetric method. The sorption data were fitted to six well-known sorption isotherm models (modified Chung-Pfost, modified Halsey, modified Henderson, modified Oswin, Chen-Clayton, and GAB models) using non-linear least square method. The GAB model was found the most satisfactory for representation of the equilibrium moisture content data for guar grain and guar gum splits. The equilibrium moisture content of guar gum splits was found to be significantly higher (p < 0.05) than that of guar grain. The isosteric heat of sorption was determined from the equilibrium moisture adsorption data using Clausius-Clapeyron type equation. Exponential relationship described well the dependence of isosteric heat of sorption on the equilibrium moisture content. The enthalpy-entropy compensation theory applied to sorption isotherms indicated enthalpy controlled sorption process.  相似文献   

12.
Sorption isotherms of intermediate moisture content (IMC) products are essential to predict shelf-life of packaged moisture-sensitive product by modelling moisture uptake during storage and distribution. The effect of temperature and initial moisture content (MC) of IMC banana on the relationship between MC and water activity were investigated. Raw bananas were dried in a tunnel dryer at 2% relative humidity (RH), 70 °C, and a 3.2 ± 0.2 m s–1 air velocity. Drying procedure was carried out a number of times until various IMC levels were obtained (5%, 14%, 22% and 33% db for banana). Sorption isotherms of bananas were determined at 10, 20, 30 and 40 °C. The initial MC of IMC banana had no significant effect on the relationship between MC and water activity according to statistical analysis. All the sorption curves were found to be Type II. BET, GAB, modified GAB, Oswin, Halsey and modified Freundlich models were fitted to the data and it was found that the best results were obtained with a modified Freundlich equation. A secondary modified Freundlich model was built accounting for the effect of a w and temperature on the sample MC.  相似文献   

13.
The moisture sorption isotherm data of walnut kernels stored in a chamber, the relative humidity (r.h.) of which is regulated by atomizing humidifier, were determined at three different temperatures (25, 35 and 45 °C) and r.h. ranging from 10% to 90%. Eight models, namely the GAB, BET, Henderson, Iglesias and Chirife, Oswin, Peleg, Smith and Caurie equations, were fitted to the sorption data. Several statistical tests were adopted as the criteria to evaluate the fitting performance of the models. Of the models tested, the Peleg model gave the best fit to experimental data. The surface area of a monolayer was calculated. The BET equation was applied to the monolayer moisture content and the corresponding aw values at which a monolayer forms are presented. The experimental data were also used to determine the thermodynamic functions such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. The sorption isosteric heats for walnut kernels were determined by the application of the Clausius-Clapeyron equation to sorption isotherms obtained from the best-fitting equation. Isosteric heats decreased with increase in moisture content and approached the latent heat of pure water. Adsorption entropy increased with increasing moisture content, and then it decreased sharply with increase in moisture content. The spreading pressures (adsorption and desorption) increased with increasing water activity. Net integral enthalpy of adsorption increased slightly with moisture content to a maximum value. Thereafter, it remained constant. Net integral entropy of adsorption was negative in value and it decreased with increase in moisture content to a minimum value, and then increased slightly with increase in moisture content.  相似文献   

14.
The moisture sorption characteristics of tea stored in a chamber regulated by an atomizing humidification system were investigated at 25, 35 and 45 °C for water activity ranging from 0.1 to 0.9. The sorption isotherms of tea were typical type II sigmoidal curves according to BET classification. In both adsorption and desorption, an increase in temperature resulted in lower equilibrium moisture contents at corresponding values of water activity. The sorption isotherms exhibited hysteresis over the whole water activity range. GAB, BET, Henderson, Iglesias and Chirife, Oswin, Peleg, Smith and Caurie models were applied for analysing the experimental data. Nonlinear regression analysis was used for the determination of the parameters in the equations. Estimated parameters and fitting ability for sorption models were evaluated. The Peleg model was found to be the most suitable for describing the relationship between equilibrium moisture content and water activity for the whole range of temperatures and relative humidities studied. The surface area of monolayer was calculated. The BET equation was solved for the monolayer moisture content and the corresponding aw values at which monolayer forms were presented. Sorption isotherm data were used to determine the thermodynamic functions such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. The Clausius-Clapeyron equation was used to evaluate the isosteric heats of sorption. The isosteric heats of sorption and sorption entropy decreased with increasing moisture content. The heat of desorption was little higher than that of adsorption at low moisture content. The enthalpy-entropy compensation theory could be successfully applied to water sorption by tea. This theory showed that the moisture sorption of tea was governed by enthalpy-controlled mechanisms. The spreading pressure increased with increase in water activity and decreased with increasing temperature. The net integral enthalpy decreased with moisture content while the net integral entropy increased.  相似文献   

15.
The equilibrium moisture contents of almond were determined using the gravimetric‐static method at 15, 30, 55 and 75C for powder and 15, 55 and 75C for nut state of almond for water activity (aw) ranging from 0.11 to 0.87. At a given aw, the results show that the moisture content decreases with increasing temperature. The experimental sorption curves are then described by the BET, GAB, Henderson, Oswin, Smith and Halsey models. A nonlinear regression‐analysis method was used to evaluate the constants of equations. The GAB model was found to be the most suitable for describing the sorption curves; the monolayer‐content values for the sorption at different temperatures are calculated. Also, the isosteric heats of adsorption of water were determined as a function of moisture content from the equilibrium data at different temperatures using the Clasius‐Clapeyron equation.  相似文献   

16.
Moisture sorption properties of chitosan   总被引:1,自引:0,他引:1  
Gabriela S. Rosa 《LWT》2010,43(3):415-707
The moisture equilibrium isotherms of chitosan were determined at 20, 30, 40, 50 and 60 °C, using the gravimetric static method. Experimental data were analyzed by the GAB, Oswin, Halsey and Smith equations. Isosteric heat and differential entropy of sorption were determined from the GAB model using the Clausius-Clapeyron and Gibbs-Helmholtz equations, and pore size distribution was calculated by the Kelvin and Halsey equations. The GAB and Oswin equations showed best fit to the experimental data with R2 ≈ 99% and low mean relative deviation values (E% < 10%). Monolayer moisture content values (from 0.12 to 0.20 kg kg−1) and water surface area values (from 450 to 700 m2 g−1) decrease with increasing temperature. Isosteric heat and differential entropy of sorption were estimated as a function of moisture content. The Kelvin and Halsey equations were adequate for calculation of pore size distribution, which varied from 0.5 to 30 nm.  相似文献   

17.
为了筛选出适合不同烟草样品的等温吸湿模型,从食品等温吸湿研究领域的众多模型中选择了14种常用的数学模型,包括理论模型8种:BET模型、GAB模型、Kühn模型、Smith模型1(非溶胀材料)、Smith模型2(溶胀材料)、Harkins模型、Hailwood模型和Lewicki模型,经验/半经验模型6种:Peleg模型、Ferro Fontan模型、DLP模型、Konstance模型、Oswin模型和Polynomial模型,对12个不同类型烟草样品的实验数据进行拟合,通过决定系数(R2)和平均相对误差(MRE)对模型的拟合效果进行了评价,并用18个不同类型的烟草样品对优选模型进行了验证。结果表明,GAB和DLP模型具有较好的普遍适用性,可分别作为烟草样品等温吸湿研究领域的理论模型和经验/半经验模型进行推广应用。   相似文献   

18.
Moisture sorption isotherms of grape pestil and foamed grape pestil were determined using the static gravimetric method at 10, 20 and 30 degrees C. The overall shape of the curves was typical of sugar-rich materials. The effect of temperature on moisture content in the lower aw range was not significant (P > 0.05). Four models, namely the Brunauer, Emmet and Teller (BET), the Guggenheim, Anderson and DeBoer (GAB) the Halsey and the Oswin, were evaluated to determine the best fit for the experimental data. The BET and GAB models fitted well the data of the samples in the temperature and water activity range studied. The Clausius-Clapeyron equation was used to evaluate the isosteric heats of sorption.  相似文献   

19.
Moisture sorption isotherms and thermodynamic properties of cassava starch and soy protein concentrate–based edible films were investigated. Equilibrium moisture content was determined at various temperatures (10, 20, 30 and 40 °C) and relative humidities (17–83%) using gravimetric method, and the results were analysed using four sorption isotherm models. The equilibrium moisture of edible films (both adsorption and desorption modes) decreased with soy protein concentrate addition and temperature at constant water activity. The monolayer moisture content values of cassava starch–soy protein concentrate edible films decreased with increase in temperature and soy protein level. GAB and Oswin models (%RMS ≤10) best described the isotherms of the biofilms with the monolayer moisture contents, isosteric enthalpy and entropy higher for adsorption with significant kinetic compensations. The moisture sorption and thermodynamic properties of cassava starch–soy protein concentrate edible films showed that they are suitable for packaging applications.  相似文献   

20.
The equilibrium moisture contents (MC) of leaves and stems of lemon balm (Melissa officinalis L.) were determined separately at temperatures of 25, 35 and 45 °C over a stepwise increase of relative humidity (RH) ranging from 3 to 90% by an automatic, gravimetric analyzer (DVS system). Equilibrium was achieved within 6 h for most of the target values of relative humidity. The equilibrium moisture content of leaves was significantly higher than that of stems (p < 0.05). Differences in moisture sorption capacity between the leaves and stems can be attributed to chemical composition and structure of the tissues. Five three-parameter moisture sorption models (modifications of Chung–Pfost, GAB, Halsey, Henderson and Oswin) were tested for their effectiveness to fit the experimental sorption data. The modified Oswin equation was found to be the best model to describe the adsorption isotherms of both leaves and stems of lemon balm. The recommended MC values of leaves and stems for microbial safe storage at 25 °C were 0.124 and 0.113 kg water per kg dry solids, respectively. The net isosteric heat of sorption was computed from the predicted sorption data by applying the integrated form of the Clausius–Clapeyron equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号