首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
BACKGROUND: Pharmacologic treatment using potassium-channel openers (PCOs) before cardioplegic arrest has been demonstrated to provide beneficial effects on left ventricular performance with subsequent reperfusion and rewarming. However, the PCO treatment interval necessary to provide protective effects during cardioplegic arrest remains to be defined. The present study was designed to determine the optimum period of PCO treatment that would impart beneficial effects on left ventricular myocyte contractility after simulated cardioplegic arrest. METHODS: Left ventricular porcine myocytes were assigned randomly to three groups: (1) normothermic control = 37 degrees C for 2 hours; (2) cardioplegia = K+ (24 mEq/L) at 4 degrees C for 2 hours followed by reperfusion and rewarming; and (3) PCO and cardioplegia = 1 to 15 minutes of treatment with the PCO aprikalim (100 micromol/L) at 37 degrees C followed by hypothermic (4 degrees C) cardioplegic arrest and subsequent rewarming. Myocyte contractility was measured after rewarming by videomicroscopy. A minimum of 50 myocytes were examined at each treatment and time point. RESULTS: Myocyte velocity of shortening was reduced after cardioplegic arrest and rewarming compared with normothermic controls (63+/-3 microm/s versus 32+/-2 microm/s, respectively; p < 0.05). With 3 minutes of PCO treatment, myocyte velocity of shortening was improved after cardioplegic arrest to values similar to those of normothermic controls (56+/-3 microm/s). Potassium channel opener treatment for less than 3 minutes did not impart a protective effect, and the protective effect was not improved further with more prolonged periods of PCO treatment. CONCLUSIONS: A brief interval of PCO treatment produced beneficial effects on left ventricular myocyte contractile function in a simulated model of cardioplegic arrest and rewarming. These results suggest that a brief period of PCO treatment may provide a strategy for myocardial protection during prolonged cardioplegic arrest in the setting of cardiac operation.  相似文献   

2.
Medical management of patients with chronic left ventricular dysfunction continues to be a difficult problem. Recent clinical and experimental studies have suggested that 3,5,3'-triiodo-L-thyronine improves left ventricular pump function. However, whether 3,5,3'-triiodo-L-thyronine directly improves myocyte contractile function in cardiomyopathic states is unknown. Accordingly, this study examined the direct effects of 3,5,3'-triiodo-L-thyronine on isolated myocyte contractile function in cardiocytes obtained from control (n = 6) pigs and pigs with tachycardia-induced dilated cardiomyopathy (atrial pacing at 240 beats/min for 3 weeks; n = 6). Myocyte percent shortening and velocity of shortening were obtained at baseline and in the presence of 3,5,3'-triiodo-L-thyronine doses of 80 and 100 pmol/L. For both control and dilated cardiomyopathy groups, 3,5,3'-triiodo-L-thyronine caused a significant increase in myocyte contractile function. For example, a 100 pmol/L dose of 3,5,3'-triiodo-L-thyronine increased myocyte velocity of shortening by 51% in control myocytes and by 54% in dilated cardiomyopathy myocytes compared with baseline. A second series of experiments was performed to determine whether 3,5,3'-triiodo-L-thyronine altered the responsiveness of the beta-adrenergic receptor system in control and dilated cardiomyopathy myocytes. Myocyte contractile function was examined during beta-adrenergic stimulation with isoproterenol alone and in myocytes preincubated with 3,5,3'-triiodo-L-thyronine doses of 80 and 100 pmol/L to which isoproterenol was added. Isoproterenol alone increased velocity of shortening by 139% in control and by 233% in dilated cardiomyopathy myocytes compared with baseline. This was significantly greater than the increase with 3,5,3'-triiodo-L-thyronine alone. 3,5,3'-triiodo-L-thyronine followed by isoproterenol increased velocity of shortening by 245% in control and 313% in dilated cardiomyopathy myocytes compared with baseline. This was significantly greater than the response with 3,5,3'-triiodo-L-thyronine or isoproterenol alone and appeared to be greater than an additive response. The results from this study clearly demonstrated that 3,5,3'-triiodo-L-thyronine directly augmented myocyte contractile function in both control and dilated cardiomyopathy myocytes. In addition, 3,5,3'-triiodo-L-thyronine enhanced the contractile response to beta-adrenergic stimulation in dilated cardiomyopathy. This study provides unique evidence to suggest that 3,5,3'-triiodo-L-thyronine may be a useful adjunct to conventional inotropic support in the setting of advanced left ventricular dysfunction.  相似文献   

3.
1. This study examines the protective effect of staurosporine, chelerythrine, Ro 31-8220 and 2,3-butanedione monoxime in rat hearts during hypothermic storage. 2. Hearts were microperfused at 4 degrees C for 24 or 48 h with a storage buffer that in some cases contained one of these protein kinase C inhibitors either alone or in combination with 2,3-butanedione monoxime. After hypothermic storage, hearts were rewarmed to 37 degrees C with Krebs-Henseleit buffer. Cardiac function was then assessed in either Langendorff mode or working heart mode. 3. Compared with values from fresh non-stored hearts, hypothermic stored hearts showed a significant decrease in both coronary flow and left ventricular developed pressure when the stored hearts were reperfused in Langendorff mode. The decrease in coronary flow and left ventricular developed pressure was more pronounced in hearts stored for 48 h than in those stored for 24 h. 4. Hearts stored for 24 or 48 h, with or without the protein kinase C inhibitors, and then perfused in working mode generated less aortic flow and less cardiac output than fresh unstored hearts. 5. Hearts preserved in solutions containing staurosporine, chelerythrine, Ro 31-8220 or 2,3-butanedione monoxime had significantly higher left ventricular developed pressure values on reperfusion than hearts stored without any such drug. 6. Addition of 2,3-butanedione monoxime to a storage buffer containing either staurosporine, chelerythrine or Ro 31-8220 further improved left ventricular developed pressure, aortic flow and cardiac output values in these stored hearts. The group of hearts stored in a buffer containing 2,3-butanedione monoxime and chelerythrine gave the highest left ventricular developed pressure value seen during reperfusion. 7. The ATP and creatine phosphate concentrations of hearts stored in buffer alone were significantly lower than those of fresh unstored hearts, irrespective of the duration of storage. ATP concentrations were better preserved in hearts stored in a buffer containing 2,3-butanedione monoxime or/and one of the protein kinase C antagonists than those stored without such antagonists. A positive correlation was found between peak cardiac output values and the concentrations of combined high-energy phosphates in various groups of stored and reperfused hearts. 8. The present study showed that inhibition of protein kinase C during long-term hypothermic storage significantly increased high-energy phosphate concentrations and also improved contractile function during reperfusion.  相似文献   

4.
OBJECTIVES: Comparison of the effects of supraventricular tachycardia-induced dilated cardiomyopathy on left and right ventricular isolated myocyte geometry and function. BACKGROUND: Chronic ventricular tachycardia and supraventricular tachycardia cause left ventricular dilation and dysfunction in humans. However, it is unknown whether supraventricular tachycardia-induced dilated cardiomyopathy is a homogenous process for both the left and right ventricles. METHODS: Dilated cardiomyopathy was induced by rapid atrial pacing (240 beats/min, 3 weeks) in 5 pigs. Five age- and weight-matched pigs served as controls. Ventricular mass was measured, myocyte dimensions were obtained, and isolated right and left ventricular myocyte contractile performance was evaluated at baseline and after beta-adrenergic receptor stimulation. RESULTS: With the development of dilated cardiomyopathy, there was no change in left ventricular mass. In contrast, right ventricular mass was increased, as was right ventricular myocyte cross-sectional area. In the control group, baseline right ventricular myocyte contractile function was increased compared to left ventricular myocytes. beta-adrenergic receptor stimulation increased myocyte contractile function in both left and right ventricular myocytes. With supraventricular tachycardia-induced cardiomyopathy, both left and right ventricular myocyte contractile function and beta-adrenergic responsiveness were reduced. CONCLUSIONS: This study demonstrated differences in left and right ventricular myocyte growth with supraventricular tachycardia-induced dilated cardiomyopathy and this differential growth response was associated with changes in contractile performance. Thus, in this model of cardiomyopathic disease, left and right ventricular growth and changes in contractile performance are not a homogenous process.  相似文献   

5.
BACKGROUND: Because of methods required for obtaining isolated left ventricular myocytes, evaluation of the contractile function of isolated left ventricular myocytes in normal human patients has been limited. Accordingly, the goal of the present study was to develop a means to isolate human left ventricular myocytes from small myocardial biopsy specimens collected from patients undergoing elective coronary artery bypass operations and to characterize indices of myocyte contractile performance. METHODS: Myocardial biopsy specimens were obtained from the anterior left ventricular free wall of 22 patients undergoing coronary artery bypass operations. Myocytes were isolated from these myocardial samples by means of a stepwise enzymatic digestion method and micro-trituration techniques. Isolated left ventricular myocyte contractile function was assessed by computer-assisted high-speed videomicroscopy under basal conditions and in response to beta-adrenergic receptor stimulation with isoproterenol. RESULTS: A total of 804 viable left ventricular myocytes were successfully examined from all of the myocardial biopsy specimens with an average of 37+/-4 myocytes per patient. All myocytes contracted homogeneously at a field stimulation of 1 Hz with an average percent shortening of 3.7%+/-0.1% and shortening velocity of 51.3+/-1.3 microm/s. After beta-adrenergic receptor stimulation with isoproterenol, percent shortening and shortening velocity increased 149% and 118% above baseline, respectively (P < .05). CONCLUSION: The unique results of the present study demonstrated that a high yield of myocytes could be obtained from human left ventricular biopsy specimens taken during cardiac operations. These myocytes exhibited stable contractile performance and maintained the capacity to respond to an inotropic stimulus. The methods described herein provide a basis by which future studies could investigate intrinsic and extrinsic influences on left ventricular myocyte contractility in human beings.  相似文献   

6.
BACKGROUND: Recombinant human growth hormone (GH) improves in vivo cardiac function in rats with postinfarction heart failure (MI). We examined the effects of growth hormone (14 days of 3.5 mg. kg-1. d-1 begun 4 weeks after MI) on contractile reserve in left ventricular myocytes from rats with chronic postinfarction heart failure. METHODS AND RESULTS: Cell shortening and [Ca2+]i were measured with the indicator fluo 3 in myocytes from MI, MI+GH, control, and normal animals treated with GH (C+GH) under stimulation at 0.5 Hz at 37 degrees C. Cell length was similar in MI and MI+GH rats (150+/-5 and 157+/-5 microm) and was greater in these groups than in the control and C+GH groups (140+/-4 and 139+/-4 microm, P<0.05). At baseline perfusate calcium of 1.2 mmol/L, myocyte fractional shortening and [Ca2+]i transients were similar among the 4 groups. We then assessed contractile reserve by measuring the increase in myocyte fractional shortening in the presence of high-perfusate calcium of 3.5 mmol/L. In the control and C+GH groups, myocyte fractional shortening and peak systolic [Ca2+]i were similarly increased in the presence of high-perfusate calcium. In the presence of high-perfusate calcium, both myocyte fractional shortening and peak systolic [Ca2+]i were depressed in the MI compared with the control groups. In contrast, myocyte fractional shortening (14.1+/-.9% versus 11.1+/-.9%, P<0.05) and peak systolic [Ca2+]i (647+/-43 versus 509+/-37 nmol/L, P<0.05) were significantly higher in MI+GH than in MI rats and were comparable to controls. Left ventricular myocyte expression of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA-2) and left ventricular SERCA-2 protein levels were increased in MI+GH compared with MI rats. CONCLUSIONS: Calcium-dependent contractile reserve is depressed in myocytes from rats with postinfarction heart failure. Long-term growth hormone therapy increases contractile reserve by restoring normal augmentation of systolic [Ca2+]i in myocytes from rats with postinfarction heart failure.  相似文献   

7.
ATP-sensitive potassium channel (KATP) openers directly protect ischemic myocardium, which may make them useful for treating patients undergoing cardiopulmonary bypass, but whether high-potassium-containing cardioplegic solutions would inhibit their protective effects is not clear. We determined whether additional protection greater than that provided by cardioplegia could be found for KATP openers. We studied the effect of 10 microM cromakalim or BMS-180448 pretreatment (10 min before cardioplegia) on severity of ischemia in isolated rat hearts given normothermic or cold St. Thomas' cardioplegic solution (16 mM K+). After cardioplegic arrest, the hearts were subjected to 30-min (normothermic) or 150-min (hypothermic) global ischemia, each followed by 30-min reperfusion. The cardioplegic solutions significantly protected the hearts, as measured by increased time to onset of contracture, enhanced recovery of function, and reduced lactate dehydrogenase (LDH) release. Cromakalim and BMS-180448 both further significantly increased time to contracture in both normothermic and hypothermic arrested hearts; this was accompanied by enhanced recovery of reperfusion contractile function and reduced cumulative LDH release. This additional protective effect of the K ATP openers was abolished by glyburide. Because administration of the K ATP openers only with the cardioplegic solution (1 min before global ischemia) was not efficacious, >1-min pretreatment apparently is necessary. K ATP openers provide additional protection to that afforded by cold or normothermic potassium cardioplegia in rat heart, although the timing of treatment may be crucial.  相似文献   

8.
Inflammatory cytokines have been implicated in the reversible depression of cardiac contractile function accompanying local or systemic immune stimulation. Incubation of cardiac myocytes with soluble components in the supernatant from cultured rat lung macrophages activated with endotoxin decreases their contractile response to beta-adrenergic stimulation through the induction of iNOS and the subsequent production of nitric oxide by these cells. In the present study, we characterize the mechanisms underlying NO's attenuation of adrenergic responsiveness in cardiac myocytes. iNOS was induced in cultured ventricular myocytes from adult rats by incubation for 20 h with conditioned medium from lipopolysaccharide (LPS)-activated macrophages. iNOS induction did not induce any alteration in beta-adrenergic receptor density or affinity, Galphai protein abundance, or adenylyl cyclase activity in cultured myocytes. Myocyte exposure to activated macrophage-conditioned medium markedly attenuated the elevation of cAMP in response to isoproterenol (Iso, 2 nM). Induction of iNOS with the macrophage-conditioned medium also potentiated the Iso-induced increase in myocyte cGMP. This cGMP increase was totally abolished by NOS inhibitors. NOS inhibition also returned the attenuated cAMP response to 2 nM Iso to levels observed in control cells. Pre-incubation of the cells in isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor, also partly reversed the attenuation of cAMP increase with 2 nM Iso in cells expressing iNOS. Brief (15 min) exposure of myocytes to the NO donor, S-nitrosoacetylcysteine (SNAC, 100 micro M) which produced a three-fold increase in intracellular cGMP, also decreased by half the contractile response of cardiac myocytes to Iso (2 nM). We conclude that NO endogenously produced by iNOS decreases the intracellular levels of cAMP in response to beta-adrenergic stimulation in isolated cardiac myocytes, in part through a cGMP-mediated mechanism. This effect may participate in the NO-dependent depression of cardiac function following cytokine exposure.  相似文献   

9.
The present study was designed to investigate the effectiveness of staurosporine and 2,3-butanedione monoxime (BDM) in preserving cardiac function of long-term hypothermic-stored hearts. Rat isolated hearts were perfused very slowly at 4 degrees C for 16 hr with a storage buffer solution containing staurosporine and BDM. Heart functions were then examined during 2 hr of normothermic reperfusion. Isovolumetric left ventricular-developed pressure (LVDP), its differential, heart rate, and coronary flow were measured in 5 groups of hearts: controls (fresh unstored hearts), stored drug-free hearts, stored staurosporine-treated hearts, stored BDM-treated hearts, and stored BDM + staurosporine-treated hearts. Hearts that had been perfused with staurosporine or BDM during hypothermic storage attained LVDP values that were 37% or 70%, respectively, of that shown by the control group. Hearts perfused without any drug in the storage buffer attained an LVDP value that was 20% of the control value. Heart rates of stored and then normothermically reperfused hearts were lower than, but not significantly different from, values in the control group. Coronary flow values in all stored hearts were significantly lower than the control values. Thus, BDM, and to a lesser extent staurosporine, applied during prolonged hypothermic storage improved cardiac function during normothermic reperfusion.  相似文献   

10.
To investigate Ca2+ handling in compensated hypertrophied cardiomyocytes, we measured Ca2+ transients and contraction of hypertrophied rat left ventricular myocytes induced by aortic constriction (AC). The fluorescence ratio (I405/I480) after indo-1/AM loading and circumferential length were simultaneously measured in isolated myocytes. The amplitude of Ca2+ transients (Ca-Amp) was higher in rats with AC than in sham-operated rats (Sham) (0.25 +/- 0.08 vs 0.17 +/- 0.05). There was a positive correlation between Ca-Amp and fractional shortening (FS) in both AC and Sham rats, whereas the ratio of FS/Ca-Amp was smaller in AC rats. These observations suggest that compensated hypertrophied cardiomyocytes exhibit an adaptive increase in Ca-Amp, associated with reduced myofilament responsiveness to an increase in Ca2+. Isoproterenol and forskolin increased Ca-Amp and FS, and decreased time to 50% decline of Ca2+ transients. Although myocytes from AC rats exhibited reduced responsiveness to isoproterenol, responses to forskolin did not differ between the 2 groups. The reduced beta-adrenergic response in Ca2+ handling was probably due to altered beta-adrenoceptor numbers, G-protein function and/or their coupling process.  相似文献   

11.
We examined intracellular calcium transients of isolated single cardiac myocytes from rats with doxorubicin (DOX)-induced cardiomyopathy with simultaneous measurement of cell motion. DOX was administered i.p. to Sprague-Dawley rats at 2.5 mg/kg once a week for 10 weeks. Field-stimulated calcium transients and simultaneous cell motion in single myocytes were measured in the presence or absence of isoproterenol using fura-2/AM. Histopathologic examination revealed slight changes. The time courses of both calcium transients and cell motion were significantly prolonged by DOX. There was a slight but not significant reduction in parameters of contractility in both calcium transients and cell motion. The beta-adrenoceptor responsiveness of both calcium transients and cell motion was not significantly impaired compared with the controls. Our data indicated that, despite the slight histologic changes in the heart in DOX-induced cardiomyopathy, impaired sequestration of intracellular free calcium ions in individual myocytes may be one factor leading to diastolic dysfunction. Monitoring of diastolic function is important to detect early cardiotoxicity caused by DOX.  相似文献   

12.
The effects of calcium and magnesium ions in cardioplegic solutions on cardioprotection and intracellular calcium ion handling during ischemia and reoxygenation were investigated in cultured neonatal rat myocardial cells. Myocytes were subjected to simulated ischemia for 60 min at 37 degrees C in hyperkalemic cardioplegic solutions containing various concentrations of calcium and magnesium ions, followed by 30 min of reoxygenation. For each Ca2+ concentration (0.1, 0.6, 1.2, or 2.4 mM), the Mg2+ concentration was either 0, 1.2, 8, or 16 mM. The increase in intracellular Ca2+ concentration during ischemia and reoxygenation was suppressed by the addition of magnesium ion, independent of cardioplegic Ca2+ concentration. The recovery of spontaneous contraction rate and enzyme leakage (creatine phosphokinase and lactate dehydrogenase) during both ischemia and reoxygenation correlated with the degree of inhibition of intracellular Ca2+ accumulation. However, in the 0.1 mM Ca2+ groups in which the Mg2+ concentration was greater than 8 mM, the intracellular Ca2+ concentration increased during reoxygenation in a dose-dependent fashion of Mg2+, and was associated with increased enzyme leakage. The findings suggest that in immature cardiac myocytes, the concentrations of Ca2+ and Mg2+ present in cardioplegic solutions control the intracellular Ca2+ concentration during ischemia and reoxygenation, which, in turn, influences the cardioprotective effect of the cardioplegic solution.  相似文献   

13.
The effect of cardiac sympathetic stimulation on cardiac contractile efficiency was studied in dogs. In 19 anesthetized and open-chest dogs, left ventricular (LV) pressure, LV volume, coronary blood flow and coronary venous oxygen saturation were measured simultaneously. The LV end-systolic pressure volume relations (ESPVR) and the relation between myocardial oxygen consumption (VO2)-pressure volume area (PVA) were obtained during a transient occlusion of the inferior vena cava before and after sympathetic stimulation (9V, 6 Hz, 40 sec) both with and without 50 mg/kg of 2,3-butanedione monoxime (BDM). Without BDM, sympathetic stimulation increased the slope of ESPVR by 62% (p<0.05), the slope of the VO2-PVA line by 19% (p<0.05) and the y-axis intercept of the VO2-PVA by 65% (p<0.05). With BDM, the increase in the slope of the VO2-PVA line became insignificant although other responses were similarly preserved. These data imply that cardiac sympathetic stimulation decreases cardiac contractile efficiency through mechanisms by which norepinephrine-induced beta-adrenergic activation enhances myosin ATPase-operating ATP hydrolysis in crossbridge formation.  相似文献   

14.
BACKGROUND: Ischemic preconditioning (IP) can reduce lethal injury to the myocardium induced by prolonged ischemia. However, little is known about the effect of preconditioning on the heart subjected to cardioplegic arrest and hypothermic preservation. We evaluated the effect of IP on myocardial metabolism, mechanical performance, and coronary endothelial function after cardioplegic arrest and prolonged hypothermic preservation. METHODS: An isovolumic Langendorff perfused rat heart model was used, and hearts were divided into two groups. The first group (IP, n = 14) was preconditioned by 5 minutes of global normothermic (37 degrees C) ischemia followed by 10 minutes of normothermic reperfusion before 6 hours of cold (4 degrees C) preservation, followed by 60 minutes of reperfusion. The second group (control, n = 15) was subjected to 6 hours of cold preservation followed by 60 minutes of reperfusion without preconditioning. Mechanical function was assessed using left ventricular balloon by constructing pressure-volume curves in two ways: at defined left ventricular volumes or at defined left ventricular end-diastolic pressures. Initially, the volume of the balloon was increased incrementally from 0 to 150 microL in 25-microL steps. Measurements were then repeated with loading balloon to achieve left ventricular end-diastolic pressure of 5, 10, 15, or 20 mm Hg. Myocardial function was assessed before ischemia and at 15 or 60 minutes of reperfusion. Metabolic status of the heart was evaluated by measuring the release of purine catabolites during the initial 15 minutes of reperfusion and concentrations of myocardial nucleotides at the end of reperfusion. Endothelium-mediated vasodilatation was evaluated using 10 mumol/L 5-hydroxytryptamine before and after ischemia. RESULTS: Left ventricular end-diastolic pressure values were significantly lower in the IP group, by 20% to 40%, during the reperfusion phase at each volume of the balloon compared with the control group. The rate-pressure product was more favorable during reperfusion in the IP than in the control group because of a 15% increased heart rate in the IP group. The release of purine catabolites from the heart during the reperfusion phase was reduced (p < 0.01) in the IP group (0.66 +/- 0.04 mumol) relative to the control group (0.92 +/- 0.06 mumol). No difference in the recovery of systolic function, myocardial adenosine triphosphate concentration, or endothelial function was observed between the groups. CONCLUSIONS: Under conditions of cardioplegic arrest and hypothermic preservation, IP can offer additional protection for the heart by preventing an increase in diastolic stiffness. However, metabolic improvement or better preservation of the systolic or endothelial function was not observed in this model.  相似文献   

15.
BACKGROUND: Conflicting results have been reported regarding the acute effects of triiodothyronine (T3) on myocardial contractile performance. The present study analyzes the role of T3 in reversing the depressant effect of excessive catecholamine stimulation in isolated porcine left ventricular myocardium. METHODS: Thirty-six left ventricular trabeculae (0.4 x 6.0 mm) obtained from 6 pigs were used for measurements of isometric force development, isotonic shortening, and intracellular calcium in three experimental series (measurement conditions: 37 degrees C; optimal length; supramaximal electrical stimulation, 1 Hz; calcium measurement, fura-2 ratio method; frequency, 225 Hz). In series 1, isometric force development was measured before and after a 60-minute incubation with 10(-7) mol/L epinephrine in preparations with (n = 6) and without (n = 6) preceding fura-2 loading for calcium measurements. In series 2, the acute effects of a 30-minute administration of T3 (10(-9) mol/L) on isometric force and intracellular calcium were analyzed (n = 6). In series 3, after simultaneous fura-2 loading and a 6-hour 10(-7) mol/L epinephrine exposure the effects of T3 (10(-9) mol/L, 30 minutes) on force development, shortening, and intracellular calcium transient were analyzed. RESULTS: Long-term and high-dose epinephrine exposure induced a severe contractile depression with a significant reduction of isometric force development (p < 0.05) and increased diastolic (p < 0.001) and systolic calcium (p < 0.001). In normal porcine myocardium T3 had no effect on the extent of isometric force generation but accelerated the time course of force development (p < 0.05) and increased the calcium transient (p < 0.001). After induction of myocardial depression by epinephrine exposure T3 accelerated the intracellular calcium transients and reduced diastolic calcium. Triiodothyronine increased the shortening amplitude and the force amplitude (p < 0.01). CONCLUSIONS: Triiodothyronine reverses depressed contractile performance after preceding high-dose epinephrine exposure in isolated porcine myocardium. Increased force amplitudes and unaltered or even reduced intracellular calcium transients argue in favor of a resensitization of the contractile apparatus for calcium by T3. The study supports a potential role for T3 treatment in depressed myocardium after previous excessive catecholamine exposure (eg, brain death, catecholamine treatment, ischemia).  相似文献   

16.
Effects on isometric tension generation and maximum velocity of unloaded shortening after exposure to cAMP-dependent protein kinase (PKA) were investigated in rat enzymatically isolated, tritonized ventricular myocytes. Exposure of myocytes to PKA in the presence of [32P]ATP resulted in phosphorylation of troponin I and C protein. Ca2+ sensitivity of isometric tension was assessed as pCa50, ie, the [Ca2+] at which tension was 50% of maximum, and was lower after PKA treatment (pCa50 5.58) than before PKA treatment (pCa50 5.74). This suggests beta-adrenergic stimulation of the heart and subsequent increases in PKA activity and phosphorylation of troponin I and C protein lead to a significant decrease in tension-generating ability at a given submaximum [Ca2+]. Unloaded shortening velocity was determined by measuring the time required to take up various amounts of slack imposed at one end of the cardiac myocyte preparation. Unloaded shortening velocity during maximum activation was 2.88 +/- 0.11 muscle lengths per second (mean +/- SEM) before PKA exposure and 2.86 +/- 0.13 muscle lengths per second after PKA exposure. Unloaded shortening velocity during 40% of maximum activation was 1.91 +/- 0.25 muscle lengths per second before PKA exposure and 2.17 +/- 0.15 muscle lengths per second after PKA exposure. The absence of an effect of PKA on unloaded shortening velocity in skinned ventricular myocytes suggests that beta-adrenergic stimulation of myocardium either does not affect myofilament velocity of shortening or alters velocity of shortening by a non-PKA-dependent process.  相似文献   

17.
Neuropathologic findings are described, for the first time, in a neonatal dog model of circulatory arrest in normothermic conditions, and the findings are compared to those reported in neonatal dogs with hypothermic circulatory arrest. Total circulatory arrest was produced in 3- to 6-day-old anesthetized, paralyzed and ventilated, normothermic dogs either by asphyxiation or cardioplegia. Duration of circulatory arrest was 8-20 min and 10-40 min in asphyxiated and cardioplegic animals, respectively. The animals were resuscitated and maintained under controlled systemic physiologic conditions until neuropathologic examination after 8 or 24 h of recovery. The results suggest that the minimal durations of circulatory arrest for brain damage to occur following asphyxia or cardioplegia are 10 and 15 min, respectively. Ischemic lesions in both groups consisted of neuronal necrosis and involved mainly the brain stem structures, particularly the reticular nuclei and the spinal cord gray matter. The medulla was more severely involved than midbrain and pons. There was a direct correlation between the length of circulatory arrest and the severity of damage in the medulla (P = 0.001) and overall brain stem damage (P = 0.004) in animals with cardioplegia, but not in animals with asphyxia. These findings are compared to the neuropathologic changes previously described in newborn dogs subjected to hypothermic circulatory arrest, in which ischemic lesions are focused on the cerebral cortex and basal ganglia. It is concluded that hypothermia in this model not only prolongs the period of circulatory arrest that is required to produce brain damage, but also shifts the pattern of regional ischemic vulnerability from caudal to more rostral structures.  相似文献   

18.
Ras and protein kinase C (PKC), which regulate the Raf-MEK-ERK cascade, may participate in the development of cardiac hypertrophy, a condition characterized by diminished and prolonged contractile calcium transients. To directly examine the influence of this pathway on intracellular calcium ([Ca2+]i), cardiac myocytes were cotransfected with effectors of this pathway and with green fluorescent protein, which allowed the living transfected myocytes to be identified and examined for [Ca2+]i via indo-1. Transfection with constitutively active Ras (Ha-RasV12) increased cell size, decreased expression of the myofibrils and the calcium-regulatory enzyme SERCA2, and reduced the magnitude and prolonged the decay phase of the contractile [Ca2+]i transients. Similar effects on [Ca2+]i were obtained with Ha-RasV12S35, a Ras mutant that selectively couples to Raf, and with constitutively active Raf. In contrast, Ha-RasV12C40, a Ras mutant that activates the phosphatidylinositol 3-kinase pathway, had a lesser effect. The PKC-activating phorbol ester, phorbol 12-myristate 13-acetate, also prolonged the contractile [Ca2+]i transients. Cotransfection with dnMEK inhibited the effects of Ha-RasV12, Raf, and phorbol 12-myristate 13-acetate on [Ca2+]i. The effects of Ha-RasV12 and Raf on [Ca2+]i were also counteracted by SERCA2 overexpression. Both Ras and PKC may thus regulate cardiac [Ca2+]i via the Raf-MEK-ERK cascade, and this pathway may represent a critical determinant of cardiac physiological function.  相似文献   

19.
The relative efficacy of potassium-induced ischemic arrest using buffered, isosmotic potassium (25 mEq/liter) was compared with hypothermic arrest in an experimental protocol employing an intact canine heart preparation. Myocardial function (LVSW, dp/dt max), serum creatine phosphokinase levels, myocardial perfusion, and light and electron microscopical examination of the heart were assessed in five groups of 5 dogs each. There was one control group (90 minutes of bypass, no anoxia) and four experimental groups, each subjected to 1 hour of ischemic arrest and 30 minutes of reperfusion, comparing normothermic ischemic arrest (NIA), hypothermic ischemic arrest (myocardial temperature less than 25 degrees C) (HIA), normothermic potassium arrest (NKA), and hypothermic potassium arrest (HKA). Myocardial function decreased significantly following NIA and NKA but remained essentially equal in the control, HIA and HKA groups. Serum creatine phosphokinase analysis documented a significant increase in each group of animals: 2,250 mU after NIA, 1,778 mU after NKA, 1,388 mU after HIA, 1,220 mU after HKA, and 838 mU after control bypass. Left ventricular myocardial perfusion was unmeasurably low after NIA, reduced to 111 m/100 gm of tissue/min after NKA, and increased to 165 to 188 ml/100 gm/min in the control, HIA and HKA groups. Electron microscopical studies showed a range of myocardial changes, from probably irreversible damage after NIA to similar but less diffuse changes after NKA, and to potentially reversible changes after HKA and HIA with the least alteration from control after HIA. The results indicate that potassium arrest alone is not as effective as hypothermia in preventing ischemic injury, and the combination of hypothermia with a single 150 cc administration of potassium (25 mEq/liter) does not appear to provide significant additional protection.  相似文献   

20.
To define the coupling mechanism between cardiac load and the rate of protein synthesis, changes in the extent of eIF-4E phosphorylation were measured after imposition of a load. Electrically stimulated contraction of adult feline cardiocytes increased eIF-4E phosphorylation to 34% after 4 h, as compared with 8% phosphorylation in quiescent controls. However, eIF-4E phosphorylation did not increase upon electrical stimulation in the presence of 7.5 mM 2,3-butanedione monoxime, an inhibitor of actin-myosin cross-bridge cycling and active tension development. Treatment of adult cardiocytes with either 0.1 microM insulin or 0.1 microM phorbol 12-myristate 13-acetate increased eIF-4E phosphorylation to 23 and 64%, respectively, but these increases were not blocked by 2,3-butanedione monoxime. In canine models of acute hemodynamic overload in vivo, eIF-4E phosphorylation increased to 23% in response to left ventricular pressure overload as compared with 7% phosphorylation in controls. Acute volume overload had no effect on eIF-4E phosphorylation. These changes in eIF-4E phosphorylation account for differences in anabolic responses to acute pressure versus acute volume overload. These data suggest that eIF-4E phosphorylation is a mechanism by which increased cardiac load is coupled to accelerated rates of protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号