共查询到20条相似文献,搜索用时 31 毫秒
1.
GeO2 was proposed as valuable passivation layer at the surface with Ge to integrate oxide with high dielectric constant in Ge-based logic devices. Hence, the identification of the defects present at different Ge/GeO2 interfaces becomes a mandatory issue to predict the electrical features of devices based on such materials. High sensitive electrically detected magnetic resonance measurements were performed to study the microstructure of defects occurring at such an interface. The influence of the oxidation temperature on the electrically active paramagnetic traps was investigated. 相似文献
2.
The HfO2 high-k thin films have been deposited on p-type (1 0 0) silicon wafer using RF magnetron sputtering technique. The XRD, AFM and Ellipsometric characterizations have been performed for crystal structure, surface morphology and thickness measurements respectively. The monoclinic structured, smooth surface HfO2 thin films with 9.45 nm thickness have been used for Al/HfO2/p-Si metal-oxide-semiconductor (MOS) structures fabrication. The fabricated Al/HfO2/Si structure have been used for extracting electrical properties viz dielectric constant, EOT, barrier height, doping concentration and interface trap density through capacitance voltage and current-voltage measurements. The dielectric constant, EOT, barrier height, effective charge carriers, interface trap density and leakage current density are determined are 22.47, 1.64 nm, 1.28 eV, 0.93 × 1010, 9.25 × 1011 cm−2 eV−1 and 9.12 × 10−6 A/cm2 respectively for annealed HfO2 thin films. 相似文献
3.
Kwang-Ho Kwon Jun-Kyu Yang Ho Jung Chang Hyung-Ho Park 《Microelectronic Engineering》2008,85(8):1781-1785
Yttrium was deposited on the chemical oxide of Si and annealed under vacuum to control the interface for the formation of Y2O3 as an insulating barrier to construct a metal-ferroelectric-insulator-semiconductor structure. Two different pre-annealing temperatures of 600 and 700 °C were chosen to investigate the effect of the interface state formed after the pre-annealing step on the successive formation of Y2O3 insulator and Nd2Ti2O7 (NTO) ferroelectric layer through annealing under an oxygen atmosphere at 800 °C. Pre-anneal treatments of Y-metal/chemical-SiO2/Si at 600 and 700 °C induced a formation of Y2O3 and Y-silicate, respectively. The difference in the pre-anneal temperature induced almost no change in the electrical properties of the Y2O3/interface/Si system, but degraded properties were observed in the NTO/Y2O3/interface/Si system pre-annealed at 600 °C when compared with the sample pre-annealed at 700 °C. C-V characteristics of the NTO/Y2O3/Si structured system showed a clockwise direction of hysteresis, and this gap could be used as a memory window for a ferroelectric-gate. A smaller hysteric gap and electrical breakdown values were observed in the NTO/Y2O3/Si system pre-annealed at 600 °C, and this was due to an unintentional distribution of the applied field from the presence of an interfacial layer containing Y-silicate and SiO2 phases. 相似文献
4.
Sanghun JeonSungho Park 《Microelectronic Engineering》2011,88(6):872-876
In this study, the interface trap density of metal-oxide-semiconductor (MOS) devices with Pr2O3 gate dielectric deposited on Si is determined by using a conductance method. In order to determine the exact value of the interface trap density, the series resistance is estimated directly from the impedance spectra of the MOS devices. Subsequently, the dispersion characteristics are numerically analyzed on the basis of a statistical model. Lastly, the process-dependent interface trap density of Pr2O3 is evaluated. It is concluded that high-pressure annealing and a superior quality interfacial SiO2 layer are of crucial importance for achieving a sufficiently low interface trap density. 相似文献
5.
C. Merckling Y.C. Chang C.Y. Lu J. PenaudM. El-Kazzi F. Bellenger G. BrammertzM. Hong J. KwoM. Meuris J. DekosterM.M. Heyns M. Caymax 《Microelectronic Engineering》2011,88(4):399-402
A fundamental issue regarding the introduction of high-mobility Ge channels in CMOS circuits is the electrical passivation of the interface with the high-k gate dielectric. In this paper, we investigate the passivation of p-Ge(0 0 1) using molecular H2S. The modification of the semiconductor surface is monitored in situ by RHEED and the interface is characterized by XPS analyses. MOS capacitors are fabricated to extract interface state density, and finally we demonstrate the efficiency of the passivation scheme using a combination with an ultra thin Al interlayer. 相似文献
6.
V.V. Afanasev Y.G. Fedorenko A. Stesmans 《Materials Science in Semiconductor Processing》2004,7(4-6):191
The energy distribution of extended and localized electron states at the Ge/HfO2 interface is determined by combining the internal photoemission of electrons and holes from Ge into the Hf oxide and AC capacitance/conductance measurements. The inferred offsets of the conduction and valence band at the interface, i.e., 2.0 ± 0.1 and 3.0 ± 0.1 eV, respectively, suggest the possibility to apply the deposited HfO2 layer as a suitable insulator on Ge. The post-deposition annealing of the Ge/HfO2 structures in oxygen results in 1 eV reduction of the valence band offset, which is attributed to the growth of a GeO2 interlayer. However, this treatment enables one to substantially reduce the density of Ge/HfO2 interface traps, approaching ≈1×1012 cm−2 eV−1 near the Ge midgap. 相似文献
7.
Eiji MiyazakiYuji Goda Shigeru Kishimoto Takashi Mizutani 《Solid-state electronics》2011,62(1):152-155
AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs) with Al2O3 gate oxide which was deposited by atomic layer deposition (ALD) were fabricated and their performance was then compared with that of AlGaN/GaN MOSHFETs with HfO2 gate oxide. The capacitance (C)-voltage (V) curve of the Al2O3/GaN MOS diodes showed a lower hysteresis and lower interface state density than the C-V curve of the HfO2/GaN diodes, indicating better quality of the Al2O3/GaN interface. The saturation of drain current in the ID-VGS relation of the Al2O3 AlGaN/GaN MOSHFETs was not as pronounced as that of the HfO2 AlGaN/GaN MOSHFETs. The gate leakage current of the Al2O3 MOSHFET was five to eight orders of magnitude smaller than that of the HfO2 MOSHFETs. 相似文献
8.
Byung Du Ahn Jong Hoon Kim Hong Seong Kang Choong Hee Lee Sang Hoon Oh Gun Hee Kim Dong Hua Li Sang Yeol Lee 《Materials Science in Semiconductor Processing》2006,9(6):1119
Metal–insulator–metal (MIM) transparent capacitors were prepared by pulsed laser deposition (PLD) on glass substrates. The effect of the thickness of the dielectric layer and oxygen pressure on structural, electrical, and optical properties of these capacitors was investigated. Experimental results show that film thickness and oxygen pressure have no effect on the structural properties. It is also found that the optical properties of the HfO2 thin films depend strongly on both the film thickness and oxygen pressure. The electrical properties of transparent capacitors were investigated at various thickness of the dielectric layer. The capacitor shows an overall high performance, such as a high dielectric constant of 28 and a low leakage current of 2.03×10−6 A/cm2 at ±5 V. Transmittance above 70% was observed in visible region. 相似文献
9.
Y.P. Chiu M.C. ShihB.C. Huang J.Y. ShenM.L. Huang W.C. LeeP. Chang T.H. ChiangM. Hong J. Kwo 《Microelectronic Engineering》2011,88(7):1058-1060
The epitaxial growth of Gd2O3 on GaAs (0 0 1) has given a low interfacial density of states, resulting in the demonstration of the first inversion-channel GaAs metal-oxide-semiconductor field-effect transistor. Motivated by the significance of this discovery, in this work, cross-sectional scanning tunneling microscopy is employed herein to obtain precise structural and electronic information on these epitaxial films and interfaces. At the interface, the interfacial stacking of Gd2O3 films is directly correlated with the stacking sequence of the substrate GaAs. Additionally, from the local electronic states across the gate oxides, the spatial extent of the GaAs wavefunctions into the oxide dielectric may suggest a minimum Gd2O3 thickness to be of bulk properties. 相似文献
10.
Md. Nurul Kabir Bhuiyan Mariela MenghiniJin Won Seo Jean-Pierre Locquet 《Microelectronic Engineering》2011,88(4):411-414
Ultra-thin films of Dy are grown on Ge(0 0 1) substrates by molecular beam deposition near room temperature and immediately annealed for solid phase epitaxy at higher temperatures, leading to the formation of DyGex films. Thin films of Dy2O3 are grown on the DyGex film on Ge(0 0 1) substrates by molecular beam epitaxy. Streaky reflection high energy electron diffraction (RHEED) patterns reveal that epitaxial DyGex films grow on Ge(0 0 1) substrates with flat surfaces. X-ray diffraction (XRD) spectrum suggests the growth of an orthorhombic phase of DyGex films with (0 0 1) orientations. After the growth of Dy2O3 films, there is a change in RHEED patterns to spotty features, revealing the growth of 3D crystalline islands. XRD spectrum shows the presence of a cubic phase with (1 0 0) and (1 1 1) orientations. Atomic force microscopy image shows that the surface morphology of Dy2O3 films is smooth with a root mean square roughness of 10 Å. 相似文献
11.
T.J. Grassman 《Microelectronic Engineering》2009,86(3):249-258
Density functional theory was used to performed a survey of transition metal oxide (MO2 = ZrO2, HfO2) ordered molecular adsorbate bonding configurations on the Ge(1 0 0)-4 × 2 surface. Surface binding geometries of metal-down (O-M-Ge) and oxygen-down (M-O-Ge) were considered, including both adsorbate and displacement geometries of M-O-Ge. Calculated enthalpies of adsorption show that bonding geometries with metal-Ge bonds (O-M-Ge) are essentially degenerate with oxygen-Ge bonding (M-O-Ge). Calculated electronic structures indicate that adsorbate surface bonding geometries of the form O-M-Ge tend to create a metallic interfaces, while M-O-Ge geometries produce, in general, much more favorable electronic structures. Hydrogen passivation of both oxygen and metal dangling bonds was found to improve the electronic structure of both types of MO2 adsorbate systems, and induced the opening of true semiconducting band gaps for the adsorbate-type M-O-Ge geometries. Shifts observed in the DOS minima for both O-M-Ge and M-O-Ge adsorbate geometries are consistent with surface band bending induced by the adsorbate films, where such band bending extends much further into the Ge substrate than can be modeled by the Ge slabs used in this work. 相似文献
12.
Y.C. ChangM.L. Huang Y.H. ChangY.J. Lee H.C. ChiuJ. Kwo M. Hong 《Microelectronic Engineering》2011,88(7):1207-1210
Al2O3, HfO2, and composite HfO2/Al2O3 films were deposited on n-type GaN using atomic layer deposition (ALD). The interfacial layer of GaON and HfON was observed between HfO2 and GaN, whereas the absence of an interfacial layer at Al2O3/GaN was confirmed using X-ray photoelectron spectroscopy and transmission electron microscopy. The dielectric constants of Al2O3, HfO2, and composite HfO2/Al2O3 calculated from the C-V measurement are 9, 16.5, and 13.8, respectively. The Al2O3 employed as a template in the composite structure has suppressed the interfacial layer formation during the subsequent ALD-HfO2 and effectively reduced the gate leakage current. While the dielectric constant of the composite HfO2/Al2O3 film is lower than that of HfO2, the composite structure provides sharp oxide/GaN interface without interfacial layer, leading to better electrical properties. 相似文献
13.
Hafnium oxide (HfO2) films were deposited on Si substrates with a pre-grown oxide layer using hafnium chloride (HfCl4) source by surface sol-gel process, then ultrathin (HfO2)x(SiO2)1−x films were fabricated due to the reaction of SiO2 layer with HfO2 under the appropriate reaction-anneal treatment. The observation of high-resolution transmission electron microscopy indicates that the ultrathin films show amorphous nature. X-ray photoelectron spectroscopy analyses reveal that surface sol-gel derived ultrathin films are Hf-Si-O alloy instead of HfO2 and pre-grown SiO2 layer, and the composition was Hf0.52Si0.48O2 under 500 °C reaction-anneal. The lowest equivalent oxide thickness (EOT) value of 0.9 nm of film annealed at 500 °C has been obtained with small flatband voltage of −0.31 V. The experimental results indicate that a simple and feasible solution route to fabricate (HfO2)x(SiO2)1−x composite films has been developed by means of combination of surface sol-gel and reaction-anneal treatment. 相似文献
14.
The role of N2 on GaAs etching at 150 mTorr capacitively-coupled Cl2/N2 plasma is reported. A catalytic effect of N2 was found at 20-25% N2 composition in the Cl2/N2 discharges. The peak intensities of the Cl2/N2 plasma were monitored with optical emission spectroscopy (OES). Both atomic Cl (725.66 nm) and atomic N (367.05 nm) were detected during the Cl2/N2 plasma etching. With the etch rate and OES results, we developed a simple model in order to explain the etch mechanism of GaAs in the high pressure capacitively-coupled Cl2/N2 plasma as a function of N2 ratio. If the plasma chemistry condition became positive ion-deficient at low % N2 or reactive chlorine-deficient at high % N2 in the Cl2/N2 plasma, the GaAs etch rate is reduced. However, if the plasma had a more balanced ratio of Cl2/N2 (i.e. 20-25% N2) in the plasma, much higher etch rates (up to 150 nm/min) than that in pure Cl2 (50 nm/min) were produced due to synergetic effect of neutral chlorine adsorption and reaction, and positive ion bombardment. Pure Cl2 etching produced 14 nm of RMS surface roughness of GaAs. Introduction of ?20% N2 gas in Cl2/N2 discharges significantly reduced the surface roughness to 2-4 nm. SEM photos showed that the morphology of photoresist mask was strongly degraded. Etch rate of GaAs slightly increased from 10 to 40 nm/min when RIE chuck power changed from 10 to 150 W at 12 sccm Cl2/8 sccm N2 plasma condition. The surface roughness of GaAs etched at 12 sccm Cl2/8 sccm N2 plasma was 2-3 nm. 相似文献
15.
Pi-Chun Juan Chih-Wei HsuChuan-Hsi Liu Ming-Tsong WangLing-Yen Yeh 《Microelectronic Engineering》2011,88(7):1217-1220
Metal-multiferroic (La-substituted BiFeO3)-insulator (CeO2)-semiconductor (MFIS) capacitors has been fabricated. The crystalline phase and amount of La3+ substitution at Bi-site were investigated by XRD and XPS in the postannealing temperature range from 500 to 700 °C, respectively. The microstructure and interfacial layer between CeO2 and Si substrate were characterized by HRTEM. The memory windows as functions of insulator film thickness and DC power for La were measured. The maximum memory window is about 1.9 V under ±6 V applied voltage. The ferroelectric polarization increases with increasing substitution amount. The morphologies of La-substituted BiFeO3 films were also studied by AFM. 相似文献
16.
In this paper, we report our recent study of the effect of RuO2 as an alternative top electrode for pMOS devices to overcome the serious problems of polysilicon (poly-Si) gate depletion, high gate resistance and dopant penetration in the trend of down to 50 nm devices and beyond. The conductive oxide RuO2, prepared by RF sputtering, was investigated as the gate electrode on the Laser MBE (LMBE) fabricated HfO2 for pMOS devices. Structural, dielectric and electric properties were investigated. RuO2/HfO2/n-Si capacitors showed negligible flatband voltage shift (<10 mV), very strong breakdown strength (>10 MV cm−1). Compared to the SiO2 dielectric with the same EOT value, RuO2/HfO2/n-Si capacitors exhibited at least 4 orders of leakage current density reduction. The work function value of the RuO2 top electrode was calculated to be about 5.0 eV by two methods, and the effective fixed oxide charge density was determined to be 3.3 × 1012 cm−2. All the results above indicate that RuO2 is a promising alternative gate electrode for LMBE grown HfO2 gate dielectrics. 相似文献
17.
J.C. Lee Y.P. KimZulkarnain S.J. LeeS.W. Lee S.B. KangS.Y. Choi Y. Roh 《Microelectronic Engineering》2011,88(7):1417-1420
The dielectric properties and reliability of fluorinated HfO2 have been studied. The fluorinated HfO2 dielectric treated by NF3 plasma showed improved dielectric characteristics but resulted in interfacial layer (IL) regrowth during the fluorine plasma treatment process, which led to an oxide capacitance reduction and poor electrical characteristics. Through the analysis of chemical composition and electrical characteristics, it has been revealed that the Hf-O bonds in HfO2 layer were converted to Hf-F bonds by the plasma treatment and then the dissociated oxygen diffused to the IL. In order to suppress the IL regrowth, newly fluorinated HfO2 has been developed. Reliability of fluorinated HfO2 dielectric was sharply improved without a decrease in the oxide capacitance at fluorine plasma treatment conditions of low power and temperature. 相似文献
18.
本文中, 使用开尔文探针显微镜,研究了不同退火气氛(氧气或氮气)情况下氧化铪材料的电子和空穴的电荷保持特性。与氮气退火器件相比,氧气退火可以使保持性能变好。横向扩散和纵向泄露在电荷泄露机制中都起了重要的作用。 并且,保持性能的改善与陷阱能级深度有关。氮气和氧气退火情况下,氧化铪存储结构的的电子分别为0.44 eV, 0.49 eV,空穴能级分别为0.34 eV, 0.36 eV。 最后得到,不同退火气氛存储器件的电学性能也与KFM结果一致。对于氧化铪作为存储层的存储器件而言,对存储特性的定性和定量分析,陷阱能级,还有泄漏机制研究是十分有意义的。 相似文献
19.
The plasmochemical etching of SiO2 in CF4 + O2 plasma is considered. During the experiment SiO2 films are etched in CF4 + O2 plasma at temperatures of 300 and 350 K. The dependences of plasmochemical etching rates of SiO2 on O2 content in the feed are measured. The experimental measurements are compared with theoretical calculations. The obtained theoretical results are used to predict the real dimensions of etched trenches. It is found that decrease in temperature reduces lateral undercutting due to decreased desorption of formed SiF4 molecules from the sidewalls. 相似文献
20.
A. Debernardi C. Wiemer M. Fanciulli 《Materials Science in Semiconductor Processing》2008,11(5-6):241
On the basis of ab initio simulations, the formation of an epitaxial phase that has the anatase structure has been proposed as the microscopic mechanism responsible for the preferential orientation of monoclinic HfO2 films on the high-mobility (0 0 1) oriented Ge and GaAs substrates. In fact, the oriented monoclinic structure follows the in-plane axis of the anatase phase as proved by X-ray scattering measurements. The fact that epitaxial HfO2 anatase has no bulk counterpart is explained by our calculations as due to the unfavorable Helmholtz free energy of anatase phase when the condition of epitaxy is released. 相似文献