首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The ill-posed nature of missing variable models offers a challenging testing ground for new computational techniques. This is the case for the mean-field variational Bayesian inference. The behavior of this approach in the setting of the Bayesian probit model is illustrated. It is shown that the mean-field variational method always underestimates the posterior variance and, that, for small sample sizes, the mean-field variational approximation to the posterior location could be poor.  相似文献   

2.
The filtering problem (or the dynamic data assimilation problem) is studied for linear and nonlinear systems with continuous state space and over discrete time steps. Filtering approaches based on the conjugate closed skewed normal probability density function are presented. This distribution allows additional flexibility over the usual Gaussian approximations. With linear dynamic systems the filtering problem can be solved in analytical form using expressions for the closed skew normal distribution. With nonlinear dynamic systems an ensemble-based version is proposed for fitting a closed skew normal distribution at each updating step. Numerical examples discuss various special cases of the methods.  相似文献   

3.
Non-Gaussian spatial data are common in many sciences such as environmental sciences, biology and epidemiology. Spatial generalized linear mixed models (SGLMMs) are flexible models for modeling these types of data. Maximum likelihood estimation in SGLMMs is usually made cumbersome due to the high-dimensional intractable integrals involved in the likelihood function and therefore the most commonly used approach for estimating SGLMMs is based on the Bayesian approach. This paper proposes a computationally efficient strategy to fit SGLMMs based on the data cloning (DC) method suggested by Lele et al. (2007). This method uses Markov chain Monte Carlo simulations from an artificially constructed distribution to calculate the maximum likelihood estimates and their standard errors. In this paper, the DC method is adapted and generalized to estimate SGLMMs and some of its asymptotic properties are explored. Performance of the method is illustrated by a set of simulated binary and Poisson count data and also data about car accidents in Mashhad, Iran. The focus is inference in SGLMMs for small and medium data sets.  相似文献   

4.
5.
Modern technology now has the ability to generate large datasets over space and time. Such data typically exhibit high autocorrelations over all dimensions. The field trial data motivating the methods of this paper were collected to examine the behaviour of traditional cropping and to determine a cropping system which could maximise water use for grain production while minimising leakage below the crop root zone. They consist of moisture measurements made at 15 depths across 3 rows and 18 columns, in the lattice framework of an agricultural field.Bayesian conditional autoregressive (CAR) models are used to account for local site correlations. Conditional autoregressive models have not been widely used in analyses of agricultural data. This paper serves to illustrate the usefulness of these models in this field, along with the ease of implementation in WinBUGS, a freely available software package.The innovation is the fitting of separate conditional autoregressive models for each depth layer, the ‘layered CAR model’, while simultaneously estimating depth profile functions for each site treatment. Modelling interest also lies in how best to model the treatment effect depth profiles, and in the choice of neighbourhood structure for the spatial autocorrelation model. The favoured model fitted the treatment effects as splines over depth, and treated depth, the basis for the regression model, as measured with error, while fitting CAR neighbourhood models by depth layer. It is hierarchical, with separate conditional autoregressive spatial variance components at each depth, and the fixed terms which involve an errors-in-measurement model treat depth errors as interval-censored measurement error. The Bayesian framework permits transparent specification and easy comparison of the various complex models compared.  相似文献   

6.
Probabilistic generative models work in many applications of image analysis and speech recognition. In general, there is an observation vector and a state vector , and a joint dependency structure among them. The object of interest is, given , the most likely configuration and its posterior distribution. In practice, the exact value of the posterior probability of is hard to obtain, especially when there is a large number of observed variables. Here we analyze the distribution of posterior probabilities of when there are N = 200–1000 observations. We used a probabilistic model with simple linear dependency structure in which the exact value of the posterior probability of is obtainable. Computer experiments show that even identical models generate a variety of posterior distributions, which suggest difficulties in understanding the meaning of posterior probability. Finally, by computing ’s where *’s are neighbors of , we propose a method of knowing whether the is reliable even when the posterior probability is small. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

7.
In epidemiological research, outcomes are frequently non-normal, sample sizes may be large, and effect sizes are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. I focus on binary outcomes, with the risk surface a smooth function of space, but the development herein is relevant for non-normal data in general. I compare penalized likelihood (PL) models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation.A Bayesian model using a spectral basis (SB) representation of the spatial surface via the Fourier basis provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial features while limiting overfitting and being reasonably computationally efficient. One of the contributions of this work is further development of this underused representation. The SB model outperforms the PL methods, which are prone to overfitting, but is slower to fit and not as easily implemented. A Bayesian Markov random field model performs less well statistically than the SB model, but is very computationally efficient. We illustrate the methods on a real data set of cancer cases in Taiwan.The success of the SB with binary data and similar results with count data suggest that it may be generally useful in spatial models and more complicated hierarchical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号