首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The resistance random access memory (RRAM?) device, with its electrically induced nanoscale resistive switching capacity, has attracted considerable attention as a future nonvolatile memory device. Here, we propose a mechanism of switching based on an oxygen vacancy migration-driven change in the electronic properties of the transition-metal oxide film stimulated by set pulse voltages. We used density functional theory-based calculations to account for the effect of oxygen vacancies and their migration on the electronic properties of HfO2 and Ta/HfO2 systems, thereby providing a complete explanation of the RRAM? switching mechanism. Furthermore, computational results on the activation energy barrier for oxygen vacancy migration were found to be consistent with the set and reset pulse voltage obtained from experiments. Understanding this mechanism will be beneficial to effectively realizing the materials design in these devices.  相似文献   

2.
Resistive-switching memory (RRAM) devices are attracting a considerable interest in view of their back-end integration, fast programming, and high scalability. Prediction of the programming voltages and currents as a function of the operating conditions is an essential task for developing compact and numerical models able to handle a large number ($hbox{10}^{6}$$hbox{10}^{9}$) of cells within an array. Based on recent experimental findings on the set and reset processes, we have developed physics-based analytical models for the set and reset operations in NiO-based RRAMs. Simulation results obtained by the analytical models were compared with experimental data for variable pulse conditions and were found consistent with data. The set transition is described by a threshold switching process at the broken conductive filament (CF), while the reset transition is viewed as a thermally driven dissolution and/or oxidation of the CF. Set and reset models are finally used for reliability predictions of failure times under constant-voltage stress (read disturb) and elevated-temperature bake (data retention).   相似文献   

3.
Hafnium oxide (HfOx)‐based memristive devices have tremendous potential as nonvolatile resistive random access memory (RRAM) and in neuromorphic electronics. Despite its seemingly simple two‐terminal structure, a myriad of RRAM devices reported in the rapidly growing literature exhibit rather complex resistive switching behaviors. Using Pt/HfOx/TiN‐based metal–insulator–metal structures as model systems, it is shown that a well‐controlled oxygen stoichiometry governs the filament formation and the occurrence of multiple switching modes. The oxygen vacancy concentration is found to be the key factor in manipulating the balance between electric field and Joule heating during formation, rupture (reset), and reformation (set) of the conductive filaments in the dielectric. In addition, the engineering of oxygen vacancies stabilizes atomic size filament constrictions exhibiting integer and half‐integer conductance quantization at room temperature during set and reset. Identifying the materials conditions of different switching modes and conductance quantization contributes to a unified switching model correlating structural and functional properties of RRAM materials. The possibility to engineer the oxygen stoichiometry in HfOx will allow creating quantum point contacts with multiple conductance quanta as a first step toward multilevel memristive quantum devices.  相似文献   

4.
随着器件尺寸的缩小,阻变存储器(RRAM)具有取代现有主流Flash存储器成为下一代新型存储器的潜力。但对RRAM器件电阻转变机制的研究在认识上依然存在很大的分歧,直接制约了RRAM的研发与应用。通过介绍阻变存储器的基本工作原理、不同的阻变机制以及基于阻变存储器所表现出的不同I-V特性,研究了器件的阻变特性;详细分析了阻变存储器的五种阻变物理机制,即导电细丝(filament)、空间电荷限制电流效应(SCLC)、缺陷能级的电荷俘获和释放、肖特基发射效应(Schottky emission)以及普尔-法兰克效应(Pool-Frenkel);同时,对RRAM器件的研究发展趋势以及面临的挑战进行了展望。  相似文献   

5.
研究了基于高k介质材料的阻变存储器的写入/擦除 (SET/RESET) 特性和物理机制.研究发现基于NbAlO材料的阻变存储器SET/RESET电压具有较大波动性, 通过结构优化, 在Al2O3/NbAlO/Al2O3纳米薄片堆垛结构器件中获得高度稳定性的可重复的阻变特性.基于电场调制效应, 提出了一种统一的电阻开关模型去模拟阻变存储器的SET/RESET行为, 并探讨了单层阻变薄膜的阻变存储器中由导电单元形成和湮灭的巨大随机性引起的阻变特性分布.当在NbAlO基阻变存储器中嵌入超薄Al2O3膜后, 阻变存储器的SET/RESET电压稳定性将显著提升, 其原因在于采用堆垛结构的阻变器件中各介质层中的电场重新分布并精确可控, 因此导电细丝的导通/断裂通过电场调制作用稳定均匀地在发生在具有高电场的薄缓冲层介质层中.  相似文献   

6.
This work addresses a 1T1R RRAM architecture, which allows for the precise and reliable control of the forming/set current by using an access transistor. The 1T1R devices were fabricated in a modified 0.25 μm CMOS technology. The memory cells show stable resistive switching in dc as well as pulse-induced mode with an endurance of 103 and 102 cycles, respectively. The variation of pulse widths as a function of amplitudes in 1R devices confirmed the set process distribution over a wide range of pulse widths (300 ns-100 μA), whereas the reset process variation is confined (1-3 μs).  相似文献   

7.
Resistive-switching memory (RRAM) is receiving a growing deal of research interest as a possible solution for high-density, 3D nonvolatile memory technology. One of the main obstacle toward size reduction of the memory cell and its scaling is the typically large current Ireset needed for the reset operation. In fact, a large Ireset negatively impacts the scaling possibilities of the select diode in a cross-bar array structure. Reducing Ireset is therefore mandatory for the development of high-density RRAM arrays. This work addresses the reduction of Ireset in NiO-based RRAM by control of the filament size in 1 transistor-1 resistor (1T1R) cell devices. Ireset is demonstrated to be scalable and controllable below 10 μA. The significance of these results for the future scaling of diode-selected cross-bar arrays is finally discussed.  相似文献   

8.
基于0.13μm标准逻辑工艺的1 Mb阻变存储器设计与实现   总被引:2,自引:2,他引:0  
采用了SMIC 0.13μm标准CMOS工艺设计并实现了一个1 Mb容量的基于1T1R结构的阻变存储器.描述了整个芯片的基本存储单元、存储器架构以及特殊的电路设计技术,包括优化的存储器架构、用于降低reset功耗的多电压字线驱动、使电阻分布更紧凑的斜坡脉冲写驱动以及可验证的读取参考系统.芯片实现了22F<'2>的存储单...  相似文献   

9.
Traditional charge-based memories,such as dynamic random-access memory(DRAM)and flash,are approaching their scaling limits.A variety of resistance-based memories,such as phase-change memory(PCM),magnetic random-access memory(MRAM)and resistive random-access memory(RRAM),have been long considered for emerging memory applications thanks to their non-volatility,fast speed,low power,and compact size for potentially high-density integration.  相似文献   

10.
A Resistive Random Access Memory (RRAM), where the memory performance principally originated from ‘resistive’ change rather than ‘capacitive’ one (the case with conventional CMOS memory devices), has attracted researchers across the globe, owing to its unique features and advantages meeting the demands of future generation high-speed, ultra low power, nano dimensional memory devices. A large family of semiconducting oxides have been investigated as insulator for Resistive Random Access Memory (RRAM), amongst which TiO2 is one of the potential candidate, principally owing to some of its remarkable advantages e.g. wide band gap, high temperature stability and high dielectric constant with flexibility to offer both unipolar and bipolar switching, which are essential for RRAM device applications. In this review article, we tried to represent the long voyage of TiO2 based RRAM, towards the improvement of the reliability aspects of the device performance in a comprehensive manner. Starting with the key factors like oxygen vacancies, Ti interstitials and electroforming, which are responsible for resistive switching phenomenon, various material preparation techniques for RRAM development have been discussed with emphasis on relative merits and bottlenecks of the process. The factors like electrode material and geometry, device structuring, doping, compliance current, annealing effect etc., which play the pivotal role in determining the switching performance of the device, have been reviewed critically. Finally, the article concludes with the comparison of different TiO2 based RRAM devices followed by the prediction of possible future research trends.  相似文献   

11.
The authors report the fabrication and characterization of resistive random access memory (RRAM) with Ni/ZnO/HfO2/Ni structure at room temperature. It was found that the proposed device exhibited bipolar switching behavior with multilevel characteristics in a reset process. It was found that the device exhibited two-step reset stage under high reset bias. By applying a 2nd reset stage after the transformation of the 1st reset stage, it was found that the RRAM could return to the initial state. From IV curves measured in these two reset stages, it was found that the current conduction was dominated by Schottky emission due to the migration of oxygen ions and recombination with oxygen vacancies. This reaction could break the conducting filament so as to transform carrier transport mechanism to Schottky emission. This also results in the simultaneous transformation from low resistance state (LRS) to high resistance state (HRS).  相似文献   

12.
Large, rapidly growing literature is available on bipolar resistive‐switching random access memories (RRAM) made of myriad of simple and advanced materials. Many of them exhibit similar resistance switching behavior but, until now, no unifying model can allow quantification of their voltage and time responses. Using a simple parallel circuit model, these responses of a newly discovered RRAM made of a thin‐film random material are successfully analyzed. The analysis clearly reveals a large population of intermediate states with remarkably similar switching characteristics. Such modeling framework based on simple circuit constructs also appears applicable to several RRAM made of other materials. This simple approach to analyze data write/rewrite and memory retention in RRAM may aid their further understanding and development.  相似文献   

13.
Low-power and low-variability artificial neuronal devices are highly desired for high-performance neuromorphic com-puting.In this paper,an oscillation neuron based on a low-variability Ag nanodots(NDs)threshold switching(TS)device with low operation voltage,large on/off ratio and high uniformity is presented.Measurement results indicate that this neuron demon-strates self-oscillation behavior under applied voltages as low as 1 V.The oscillation frequency increases with the applied voltage pulse amplitude and decreases with the load resistance.It can then be used to evaluate the resistive random-access memory(RRAM)synaptic weights accurately when the oscillation neuron is connected to the output of the RRAM crossbar ar-ray for neuromorphic computing.Meanwhile,simulation results show that a large RRAM crossbar array(>128×128)can be sup-ported by our oscillation neuron owing to the high on/off ratio(>108)of Ag NDs TS device.Moreover,the high uniformity of the Ag NDs TS device helps improve the distribution of the output frequency and suppress the degradation of neural network recognition accuracy(<1%).Therefore,the developed oscillation neuron based on the Ag NDs TS device shows great poten-tial for future neuromorphic computing applications.  相似文献   

14.
Resistive random-access memory(RRAM),also known as memristors,having a very simple device structure with two terminals,fulfill almost all of the fundamental requirements of volatile memory,nonvolatile memory,and neuromorphic characteristics.Its memory and neuromorphic behaviors are currently being explored in relation to a range of materials,such as biological materials,perovskites,2D materials,and transition metal oxides.In this review,we discuss the different electrical behaviors exhibited by RRAM devices based on these materials by briefly explaining their corresponding switching mechanisms.We then discuss emergent memory technologies using memristors,together with its potential neuromorphic applications,by elucidating the different material engineering techniques used during device fabrication to improve the memory and neuromorphic performance of devices,in areas such as ION/IOFF ratio,endurance,spike time-dependent plasticity(STDP),and paired-pulse facilitation(PPF),among others.The emulation of essential biological synaptic functions realized in various switching materials,including inorganic metal oxides and new organic materials,as well as diverse device structures such as single-layer and multilayer hetero-structured devices,and crossbar arrays,is analyzed in detail.Finally,we discuss current challenges and future prospects for the development of inorganic and new materials-based memristors.  相似文献   

15.
There is accumulated evidence today that an electric pulse can drastically modify the physical properties of correlated materials. An electric pulse was shown for example to induce an insulator-to-metal transition in manganites or in organic Mott insulators. We report here the first experimental evidence of a non-volatile electric pulse-induced insulator-to-metal transition and possible superconductivity in the Mott insulator GaTa4Se8. This resistive switching is concomitant to an electronic phase separation induced by the pulse. This phenomena most probably differs from the thermal, electronic injection or ionic diffusion processes explaining the resistive switching in materials foreseen for non-volatile memory (RRAM) applications.  相似文献   

16.
This study demonstrates the efficacy of an emerging p-type copper iodide (CuI) semiconductor in a flexible, low-voltage resistive random-access memory (RRAM), which can be readily integrated with metal-oxide n-type counterparts for complementary circuit systems. Herein, CuI RRAM devices are implemented via a room-temperature solid iodination process, exhibiting a consistent On/Off ratio (≈104), excellent endurance of more than ≈103 cycles, together with a long retention period (> 5 × 104 s). Furthermore, a scheme of light-mediated multi-level data storage is demonstrated using blue light illumination (λ = 455 nm), to exploit possible photonic memristive functionality through notable photo-response of CuI. In addition, the current conduction and resistive switching behaviors are systematically studied via low-temperature measurements from 203 to 343 K, validating thermal stability and the governing key switching mechanism in CuI RRAM devices. The longstanding problem with CuI device longevity is effectively addressed via PMMA encapsulation, resulting in a 15-fold improvement in the lifespan of devices even in air, as compared with non-passivated devices. These findings suggest that flexible optoelectronic systems, combined with reliable, ultra-low power CuI RRAM devices with photo memristive functionality, can leverage the enhancement of multifunctional selectors required in process-in-memories and the synaptic elements of neuromorphic applications.  相似文献   

17.
The origin of the resistive switching in Polymethyl methacrylate (PMMA) films is studied in this work, analysing the switching mechanism of Ag/PMMA/FTO devices. Significant improvement in the performance occurs upon annealing the sample, indicating that the evaporation of the solvent plays a significant role in the memory behaviour of the devices. The shift in the space-charge-limited conduction regime after the set process shows that the electron mobility has been enhanced by two orders of magnitude upon switching. Voltage stress analyses show that the switching from high-resistive phase to low resistive phase occurs only when the silver electrode is positively biased, which confirms that the origin of switching is Ag+ filament formation through PMMA. The performance of the devices at different temperatures shows that the set and reset voltages increase with temperature. This observation is explained based on the vitrification of the PMMA layer as a result of the increased evaporation of the solvent at higher temperatures.  相似文献   

18.
The physical mechanism of doping effects on switching uniformity and operation voltage in Al-doped HfO2 resistive random access memory(RRAM) devices is proposed from another perspective:defects interactions, based on first principle calculations.In doped HfO2,dopant is proved to have a localized effect on the formation of defects and the interactions between them.In addition,both effects cause oxygen vacancies(VO) to have a tendency to form clusters and these clusters are easy to form around the dopant.It is proved that this process can improve the performance of material through projected density of states(PDOS) analysis.For VO filament-type RRAM devices, these clusters are concluded to be helpful for the controllability of the switching process in which oxygen vacancy filaments form and break.Therefore,improved uniformity and operation voltage of Al-doped HfjO2 RRAM devices is achieved.  相似文献   

19.
The choice of the right statistical model to describe the distribution of switching parameters (forming, SET and RESET voltages) is a critical requirement for RRAM, as it is used to analyze the worst case scenarios of operation that have to be accounted for while designing the cross-bar array structures, so as to ensure a robust design of the circuit and reliable data storage unit. Several models have been proposed in the recent past to characterize the voltage variations in VFORM, VSET and VRESET using the percolation framework. However, most of these models assume defect generation to be a Poisson process and apply the standard Weibull distribution for parameter extraction and lifetime extrapolation. Recent dielectric breakdown studies both at the front-end as well as back-end have shown that the Weibull statistics does not describe the stochastic trends well enough, more so in downscaled structures at the low and high percentile regions given the possibility of defect clustering which is either physics-driven or process quality-driven. This phenomenon of defect clustering is all the more applicable in the context of resistive random access memory (RRAM) devices, as switching occurs repeatedly at ruptured filament locations where defect clusters pre-exist. This study examines the validity of the clustering model for RRAM switching parameter statistics (time/voltage to FORM, SET and RESET) and presents a physical picture to explain the origin of clustering in RRAM. A large set of data from various published studies has been used here to test the suitability and need for a clustering model based reliability assessment. Dependence of the clustering factor on temperature, voltage, device area, dielectric microstructure and resistance state has also been examined.  相似文献   

20.
在新型非易失性存储领域,结构简单、高速低耗的阻变存储器具有巨大优势和很强的竞争力.简要介绍了阻变存储器的结构及其两个电阻转变行为.总结了两类阻变机理,探讨了阻变存储器性能优化的方法,以及优化方法在阻变性能与器件的可靠性和稳定性之间如何取得平衡统一的问题,并展望了其前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号