首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nickel layer and a silver bonding layer have been deposited on copper electrodes over flex substrates to improve the bondability and die-shear force performance of chip?Cflex substrate assemblies when using the thermosonic flip-chip bonding process. For bonding temperature of 200°C, the maximum die-shear force was achieved by combining parameter values of 20.66?W ultrasonic power, 625?gf bonding force, and 0.5?s bonding time. The improved bondability and die-shear force could be attributed to better transfer of ultrasonic power across the bonding interface during thermosonic flip-chip bonding, owing to the high rigidity of the copper electrodes provided by the nickel layer. Experimental results also indicated that high bonding load is necessary at elevated ultrasonic power range to provide firm contact between the bumps and electrodes to enable smooth ultrasonic power transfer across the bonding interface. Moreover, prolonged bonding time caused cracks between the bumps and flex substrate. Close examination of the fracture morphologies after die-shear testing and after ultrasonic separation provided insight into the die-shear force performance as influenced by the process parameters and by the deposition of the nickel layer on the copper electrodes over the flex substrate.  相似文献   

2.
Thermosonic flip-chip bonding process with a nonconductive paste (NCP) was employed to improve the processability and bonding strength of the flip-chip onto flex substrates (FCOF). A non-conductive paste was deposited on the surface of the copper electrodes over the flex substrate, and a chip with eight gold bumps bonded onto the copper electrodes by the thermosonic flip-chip bonding process.For the chips and flex substrates assembly, ultrasonic power is important in the removal of some of the non-conductive paste on the surface of copper electrodes during thermosonic bonding. Accordingly, gold stud bumps in this study were directly bonded onto copper electrodes to form successful electrical paths between chips and the flex substrate. A particular ultrasonic power resulted in some metallurgical bonding between the gold bumps and the copper electrodes, increasing the bonding strength. The ultrasonic power was not only to remove the NCP from the copper electrodes, but also formed metallurgical bonds during the thermosonic flip-chip bonding process with NCP.In this study, the parameters of the bonding of chips onto flex substrates using thermosonic flip-chip bonding process with NCP were a bonding force of 4.9 N, a curing time of 40 s, a curing temperature of 140 °C and an ultrasonic power of 14.46 W. The processability and bonding strength of flip-chips on flex substrates using thermosonic bonding process with NCP was verified in this study. This process has great potential to be applied to the packaging of consumed electronic products.  相似文献   

3.
A copper pad oxidizes easily at elevated temperatures during thermosonic wire bonding for chips with copper interconnects. The bondability and bonding strength of a gold wire onto a bare copper pad are seriously degraded by the formation of a copper oxide film. A new bonding approach is proposed to overcome this intrinsic drawback of the copper pad. A silver layer is deposited as a bonding layer on the surface of copper pads. Both the ball-shear force and the wire-pull force of a gold wire bonded onto copper pads with silver bonding layers far exceed the minimum values stated in the JEDEC standard and MIL specifications. The silver bonding layer improves bonding between the gold ball and copper pads. The reliability of gold ball bonds on a bond pad is verified in a high-temperature storage (HTS) test. The bonding strength increases with the storage time and far exceeds that required by the relevant industrial codes. The superior bondability and high strength after the HTS test were interpreted with reference to the results of electron probe x-ray microanalyzer (EPMA) analysis. This use of a silver bonding layer may make the fabrication of copper chips simpler than by other protective schemes.  相似文献   

4.
The purpose of this study was to develop the thermosonic flip-chip bonding process for gold stud bumps bonded onto copper electrodes on an alumina substrate. Copper electrodes were deposited with silver as the bonding layer and with titanium as the diffusion barrier layer. Deposition of these layers on copper electrodes improves the bonding quality between the gold stud bumps and copper electrodes. With appropriate bonding parameters, 100% bondability was achieved. Bonding strength between the gold stud bumps and copper electrodes was much higher than the value converted from the standards of the Joint Electron Device Engineering Council (JEDEC). The effects of process parameters, including bonding force, ultrasonic power, and bonding time, on bonding strength were also investigated. Experimental results indicate that bonding strength increased as bonding force and ultrasonic power increased and did not deteriorate after prolonged storage at elevated temperatures. Thus, the reliability of the high-temperature storage (HTS) test for gold stud bumps flip-chip bonded onto a silver bonding layer and titanium diffusion barrier layer is not a concern. Deposition of these two layers on copper electrodes is an effective and direct method for thermosonic flip-chip bonding of gold stud bumps to a substrate, and ensures excellent bond quality. Applications such as flip-chip bonding of chips with low pin counts or light-emitting diode (LED) packaging are appropriate.  相似文献   

5.
This study investigates the reliability of the assembly of chips and flex substrates using the thermosonic flip-chip bonding process with non-conductive paste (NCP). The high-temperature storage (HTS) test, the temperature cycling test (TCT), the pressure cooker test (PCT) and the high-temperature/high-humidity (HT/HH) test were conducted to examine the reliability of chips that are bonded on flex substrates. The environmental parameters used in the various reliability tests were consistent with the JEDEC standards. After the reliability tests, a peeling test was performed and the microstructure of the tested specimen observed to evaluate further the reliability.The bonding strength increased with the storage period in the HTS test. After the peeling test, a layer of copper electrodes was observed to be stuck on gold bumps over the fractured morphology of the chips when the chips and flex substrates were assembled using an ultrasonic power of 14.46 W, indicating that the bonding strength between the gold bumps and the copper electrodes was even higher than the adhesive strength of the layers that were deposited on the flex substrates. The HTS test yielded sufficient thermal energy to promote atomic interdiffusion between gold bumps and copper electrodes. Metallurgical bonding between the gold bump and the copper electrode occurred, improving the bonding strength. In the assembly of chips and flex substrates without the application of ultrasonic power in bonding process, the adhesive strength of NCP was highly reliable after HTS test, because the bonding strength was maintained after HTS test for various storage periods. The typical failure mode of PCT was interfacial delamination between NCP and flex substrates. Approximately 80% of the specimens exhibited full separation after PCT at 336 h when chips and flex substrates were assembled without applied ultrasonic power to the bonding process, revealing that the NCP cannot withstand the PCT and lost its adhesive strength. Applying an adequate ultrasonic power of 14.46 W in the bonding process not only improved the bonding strength, but also enabled the bonding strength to be maintained at high level after PCT. The high bonding strength was attributable to the strong bonding of the gold bumps on the copper electrodes after PCT for various storage periods. This experimental result demonstrates that ultrasonic power can increase the reliability of PCT on chips and flex substrates that were assembled with the NCP. The bonding strength of the gold bumps on the flex substrates did not change significantly after the TCT, revealing the great reliability of TCT on chips and flex substrates that were assembled using the thermosonic flip-chip bonding process with the NCP. The bonding strength of chips bonded to flex substrates increased with the storage periods of the HT/HH test if ultrasonic power was applied to bonding process. Neither delamination nor any defect at the bonding interface was observed. The reliability of the HT/HH test for chips bonded on flex substrates using the thermosonic flip-chip process with the NCP fulfills the requirements stated in the JEDEC standards.According to the experimental findings of various reliability tests, the chips that were bonded to flex substrates using the thermosonic bonding process with NCP met the JEDEC specifications; with the exception of the adhesive strength of NCP under PCT which must be improved.  相似文献   

6.
A flip-chip assembly is an attractive scheme for use in high performance and miniaturized microelectronics packaging. Wafer bumping is essential before chips can be flip-bonded to a substrate. Wafer bumping can be used for mechanical-single point stud bump bonding (SBB), and is based on conventional thermosonic wire bonding. This work proposes depositing a titanium barrier layer between the copper film and the silver bonding layer to achieve perfect bondability and sufficiently strong thermosonic bonding between a stud bump and the copper pad.A titanium layer was deposited on the copper pads to prevent copper atoms from out-diffusing during thermosonic stud bump bonding. A silver film was then deposited on the surface of the titanium film as a bonding layer to increase the bondability and bonding strength for stud bumps onto copper pads. The integration of the silver bonding layer with a diffusion barrier layer of titanium on the copper pads yielded 100% bondability between the stud bump and pads. The strength of bonding between the gold bumps on the copper pads significantly exceeds the minimum average values in JEDEC specifications. The diffusion barrier layer of titanium effectively prevents copper atoms from out-diffusing to the silver bonding layer surface during thermosonic bonding, which fact can be interpreted with reference to the experimental results of energy dispersive spectrometry (EDS) and analyses of Auger depth profiles. This diffusion barrier layer of titanium efficiently provides perfect bondability and sufficiently strong bonding between a stud bump and copper pads with a silver bonding layer.  相似文献   

7.
A novel thermosonic (TS) bonding process for gold wire bonded onto chips with copper interconnects was successfully developed by depositing a thin, titanium passivation layer on a copper pad. The copper pad oxidizes easily at elevated temperature during TS wire bonding. The bondability and bonding strength of the Au ball onto copper pads are significantly deteriorated if a copper-oxide film exists. To overcome this intrinsic drawback of the copper pad, a titanium thin film was deposited onto the copper pad to improve the bondability and bonding strength. The thickness of the titanium passivation layer is crucial to bondability and bonding strength. An appropriate, titanium film thickness of 3.7 nm is proposed in this work. One hundred percent bondability and high bonding strength was achieved. A thicker titanium film results in poor bond-ability and lower bonding strength, because the thicker titanium film cannot be removed by an appropriate range of ultrasonic power during TS bonding. The protective mechanism of the titanium passivation layer was interpreted by the results of field-emission Auger electron spectroscopy (FEAES) and electron spectroscopy for chemical analysis (ESCA). Titanium dioxide (TiO2), formed during the die-saw and die-mount processes, plays an important role in preventing the copper pad from oxidizing. Reliability of the high-temperature storage (HTS) test for a gold ball bonded on the copper pad with a 3.7-nm titanium passivation layer was verified. The bonding strength did not degrade after prolonged storage at elevated temperature. This novel process could be applied to chips with copper interconnect packaging in the TS wire-bonding process.  相似文献   

8.
This study assesses the high-temperature storage (HTS) test and the pressure-cooker test (PCT) reliability of an assembly of chips and flexible substrates. After the chips were bonded onto the flexible substrates, specimens were utilized to assess the HTS test and PCT reliability. After the PCT and HTS tests, the die-shear test was applied to examine changes in die-shear forces. The microstructure of the test specimens was analyzed to evaluate reliability and to identify possible failure mechanisms. When the duration of the HTS test was increased, the percentage of gold bumps that peeled off from the surface of the copper pads on the chip side increased, and a crack was present at the bonding interface between the gold bumps and chip bond pads. This crack was due to thermal stress generated during the HTS test, and degraded the die-shear force of the assembly of chips and flexible substrates. After the PCT, the crack was present at the interface between deposited layers of copper electrodes after the specimens were subjected to the PCT for various durations. Moisture penetrated into the deposited layers of the copper electrodes, deposited layers lost their adhesion, and the crack progressed from the corner into the central bond area as the test duration increased. To improve the PCT reliability of assemblies of chips and flexible substrates using the thermosonic flip-chip bonding process, one must prevent moisture from penetrating into deposited layers of copper electrodes and prevent crack formation at the interface between nickel and copper layers. Underfill would be an effective approach to prevent moisture from penetrating into deposited layers during the PCT, thereby improving the reliability of the samples during the PCT.  相似文献   

9.
To understand the copper oxide effect on the bondability of gold wire onto a copper pad, thermosonic gold wire bonding to a copper pad was conducted at 90–200 °C under an air atmosphere. The bondability and bonding strength of the Au/Cu bonds were investigated. The bondability and bonding strength were far below the minimum requirements stated in industrial codes. At elevated bonding temperature of 200 °C, the bondability and bonding strength deteriorated mainly due to hydroxide and copper oxide formation on the copper pad. Oxide formation occurred if no appropriate oxide preventive schemes were applied. At lower bonding temperature, 90 °C, poor bondability and low bonding strength were mainly attributed to insufficient thermal energy for atomic inter-diffusion between the gold ball and copper pad.Copper pad oxidation was investigated using an electron spectroscopy for chemical analysis (ESCA) and thermogravimetric analysis (TGA). An activation energy of 35 kJ/mol for copper pad oxidation was obtained from TGA. This implies that different mechanisms govern the oxidation of copper pad and bulk copper. Hydroxide and copper oxide were identified based on the shifted binding energy. Cu(OH)2 forms mainly on the top surface of copper pads and the underlying layer consists mainly of CuO. The hydroxide concentration increased with increasing the heating temperatures. After heating at 200 °C, the hydroxide concentration on the copper pad surface was approximately six times that at 90 °C. Protective measures such as passivation layer deposition or using shielding gas are critical for thermosonic wire bonding on chips with copper interconnects.  相似文献   

10.
To improve the bondability and ensure the reliability of Au/Cu ball bonds of the thermosonic (TS) wire-bonding process, an argon-shielding atmosphere was applied to prevent the copper pad from oxidizing. With argon shielding in the TS wire-bonding process, 100% gold wire attached on a copper pad can be achieved at the bonding temperature of 180°C and above. The ball-shear and wire-pull forces far exceed the minimum requirements specified in the related industrial codes. In a suitable range of bonding parameters, increasing bonding parameters resulted in greater bonding strength. However, if bonding parameters exceed the suitable range, the bonding strength is deteriorated. The reliability of the high-temperature storage (HTS) test for Au/Cu ball bonds was verified in this study. The bonding strength of Au/Cu ball bonds increases slightly with prolonged storage duration because of diffusion between the gold ball and copper pad during the HTS test. As a whole, argon shielding is a successful way to ensure the Au/Cu ball bond in the TS wire-bonding process applied for packaging of chips with copper interconnects.  相似文献   

11.
As the laminate substrate industry moves from hot air solder level (HASL) finishes, alternate plating finishes are being proposed such as immersion gold/electroless nickel, electroless palladium, and electroless silver. This paper presents results of an evaluation of the thermosonic gold ball wire bondability of electroless palladium. Two palladium thicknesses, with and without a nickel underlayer, were evaluated from two vendors. In each case, a thin gold passivation layer was deposited by immersion plating over the palladium. The initial evaluation criteria included bondability (number of missed bonds and flame off errors), wire pull strength, standard deviation, bond failure mode, and visual inspection. The bonding window was determined by independently varying force (four levels), power (four levels), and time (two levels). The stage temperature was maintained at 150°C, compatible with BT laminate material. Different preconditioning environments such as a solder reflow cycle, high temperature storage (125°C) and humidity storage (85%RH/85°C) on initial bondability were also considered. Rutherford backscattering and Auger analysis were used to examine the surface finishes. The stability of the bonds was investigated by high temperature storage (125°C) with periodic electrical resistance and pull strength testing  相似文献   

12.
Higher-frequency ultrasonics have been utilized to improve the bondability of difficult substrates, i.e., substrates that would not bond or that bonded poorly using conventional ultrasonics (nominally at 60 kHz). A systematic study of the influence of higher-frequency ultrasonics on bond strength and the bondability of various substrates is reported. The studies were carried out using two essentially identical thermosonic ball bonding machines, one bonding at nominally 60 kHz and the other at 100 kHz. The only differences between the bonding machines were the ultrasonic generators’ operating frequency and the transducer horns. Key to the study was the ability to make the bonding experiments as controlled, repeatable, and independent of all variables (except frequency) as possible. Control techniques included setting the electronic flame-off to produce consistently sized free-air balls; monitoring the ultrasonic voltage and current waveforms; and picking force, dwell, energy, and substrate heat settings that would allow strong bonds to be formed at both frequencies. Wirebonds (ball bonds) in this study were evaluated primarily by the ball bond shear test. Statistical methods were used to determine whether the differences in the means and variances between comparable samples sets (one bonded at 60 kHz and the other bonded at 100 kHz) were significant. Results of our studies indicate that significant differences exist between bonding at nominally 60 kHz and bonding at 100 kHz. In particular, we describe effects associated with (1) the ball shear strength before and after thermal aging (temperatures up to 200 °C) for both 60- and 100-kHz bonds, (2) the influence of substrate-metallizations combinations on the geometry and strength of the bonds at the different frequencies, and (3) the sensitivity and control of the overall bonding processes.  相似文献   

13.
A novel flip chip process is reported in which bare dies are thermosonically bonded to arrays of electroplated copper columns formed on a substrate. The new process is intended as a low-cost, lead-free chip-on-board (COB) interconnection method for high-frequency devices. A detailed study has been performed of the electroplating and thermosonic bonding techniques involved. It was found that oxygen plasma treatment of the resist mask could increase the yield of the fine-pitch (<150 mum) column electroplating process, while the flatness of the resulting columns was affected by the plating current density and the sidewall profiles in the resist mold. Under optimal conditions, column arrays with flat tops could be produced with a 100% yield, and with a column height deviation of less than 0.5 mum over an area of 10 mmtimes10 mm. The array thermosonic bonding process was studied with the aid of Box-Behnken design of experiments based on response surface methodology. A second-order relationship between the input bonding variables and the bonding strength was derived and used to determine optimal process conditions. With this optimized process, silicon chips with aluminium metallization were thermosonically flip chip bonded to quartz test boards bumped with gold-capped copper columns. Sixteen prototype assemblies without underfill protection were evaluated by accelerated lifetime tests. The contact resistances of single column connections showed no significant change after 50 thermal shocks of 0 degC to 100 degC, and samples subjected to high-temperature storage remained intact at all bonding interfaces after 1.5 h at 300 degC. Thermal cycling between -55degC and 125 degC produced open-circuit defects in a small number of connections after 70 cycles  相似文献   

14.
Microstructural study of copper free air balls in thermosonic wire bonding   总被引:1,自引:0,他引:1  
Copper wires are increasingly used in place of gold wires for making bonded interconnections in microelectronics. In this paper, a microstructural study is reported of cross-sectioned free air balls (FABs) made with 23 μm diameter copper bonding wire. It was found that the FAB is comprised of a few columnar grains and a large number of fine subgrains formed within the columnar grains around the periphery of the FAB. It was determined that conduction through the wire was the dominant heat loss mechanism during cooling, and the solidification process started from the wire-ball interface and proceeded across the diameter then outward towards the ball periphery.The microstructure of the Cu ball bond after thermosonic bonding was investigated. The result showed that the subgrain orientations were changed in the bonding process. It is evident that metal flow along the bonding interface was from the central area to the bond periphery during thermosonic bonding.  相似文献   

15.
以钯作扩散阻挡层——一种多功能线路板表面处理方法   总被引:2,自引:1,他引:1  
电子工业不断的小型化,数种不同互联技术于线路板上电子零件连接及电接点被应用范畴不断增加。基于此用途,线路板组装垫位需被一层最后表面处理保护,如这最后表面处理层可用于不同互联技术,可被称为多功能表面层。钯是一个艮好的镍扩散阻挡层,故此层膜能抵受如焊接及键接之严酷老化测试条件。其两大优点为具有良好热超声波键接性及于无铅焊料之非常优艮焊接性。从预镀导线架过往多年经验已知即使很薄贵金属钯层及金层已可有保证可靠的金线键接性。从这一知识,沉镍浸钯浸金层膜系统(ENIPIG)被研发出来。此崭新表面处理ENIPIG三种金属镀液需互相配合才能于线路板工艺上达成理想多功能层膜。因着其薄贵金属层膜,相对于其他表面处理,可节省颇大的成本。  相似文献   

16.
Copper wire bonding is an alternative interconnection technology that serves as a viable, and cost saving alternative to gold wire bonding. Its excellent mechanical and electrical characteristics attract the high-speed, power management devices and fine-pitch applications. Copper wire bonding can be a potentially alternative interconnection technology along with flip chip interconnection. However, the growth of Cu/Al intermetallic compound (IMC) at the copper wire and aluminum interface can induce a mechanical failure and increase a potential contact resistance. In this study, the copper wire bonded chip samples were annealed at the temperature range from 150/spl deg/C to 300/spl deg/C for 2 to 250 h, respectively. The formation of Cu/Al IMC was observed and the activation energy of Cu/Al IMC growth was obtained from an Arrhenius plot (ln (growth rate) versus 1/T). The obtained activation energy was 26Kcal/mol and the behavior of IMC growth was very sensitive to the annealing temperature. To investigate the effects of IMC formation on the copper wire bondability on Al pad, ball shear tests were performed on annealed samples. For as-bonded samples, ball shear strength ranged from 240-260gf, and ball shear strength changed as a function of annealing times. For annealed samples, fracture mode changed from adhesive failure at Cu/Al interface to IMC layer or Cu wire itself. The IMC growth and the diffusion rate of aluminum and copper were closely related to failure mode changes. Micro-XRD was performed on fractured pads and balls to identify the phases of IMC and their effects on the ball bonding strength. From XRD results, it was confirmed that the major IMC was /spl gamma/-Cu/sub 9/Al/sub 4/ and it provided a strong bondability.  相似文献   

17.
This paper discusses the electric performance for thermosonic wire bonding of gold wire onto copper pads. Various methods normally used to improve bondability were investigated including the bare copper pads with argon shielding gas and the copper pads with cupric oxide film, cuprous oxide film, and silver film. The micro-contact theory was used to determine the effective contact area. The circuit contact resistance was measured for each sample and was presented in terms of ultrasound power and effective contact area. The results show that the increase in the effective contact area leads to a lower circuit contact resistance before reaching a minimum value, and further increase in the effective contact area would not have noticeable effect on the resistance.   相似文献   

18.
A new technique for attaching external package leads to metallized substrates is presented. Gold-plated copper lead frames and gold-plated headed leads of various compositions are thermocompression bonded to metallized alumina substrates. The generated patterns on the substrates consist of an evaporated layer of gold over an evaporated layer of titanium. The leads are bonded simultaneously to form gold diffusion bonds between the leads and the metallized substrate. The lead frames are stamped from 0.005 inch and 0.010 inch thick copper. The headed leads range in size from 0.017 inch in diameter to 0.025 inch square. The various problems encountered in the development of this technique and their related solutions will be discussed. The bonding tool consists of a base for positioning the substrate and a bonding tip which applies the necessary pressure and temperature to produce a bond. The base and bonding tip for lead frames can compensate for camber and nonuniform thickness in the ceramic while the base and bonding tip for headed leads are noncompensating. The various parameters of bonding time, bonding temperature, bonding force, and bond strengths will be presented. In addition, hermetic seal evaluations will be discussed. A comparative cost analysis will be made between attaching leads individually by welding versus attaching all package leads simultaneously by the thermocompression bonding technique. This investigation has opened additional avenues toward determining the full scope and capability of thermocompression bonding in an area previously dominated by brazing and the sealing of metal to glass and/or ceramics.  相似文献   

19.
Organic printed circuit boards (PCBs) with Au/Ni plates on bond pads are widely used in chip-on-board (COB), ball grid array (BGA), and chip-scale packages. These packages are interconnected using thermosonic gold wire bonding. The wire bond yield relies on the bondability of the Ni/Au pads. Several metallization parameters, including elemental composition, thickness, hardness, roughness, and surface contamination, affect the success of the solid state joining process. In this study, various characterization and mechanical testing techniques are employed to evaluate these parameters for different metallization schemes with varying Ni and Au layer thicknesses. The pull force of Au wires is measured as a function of plasma treatment applied before wire bonding to clean the bond pads. Close correlations are established between metallization characteristics and wire bond quality.  相似文献   

20.
Process development studies of Au ball bumping on metallographically polished Cu substrates at ambient temperature were conducted by investigating the effect of process parameters on the ball bond shear force and the extent of bonding. These studies were performed on substrates polished with 0.06-$mu$m or 1-$mu$m abrasive solutions so as to assess the effect of surface roughness on bondability. Response surfaces were generated to illustrate the effects of ultrasonic power, bonding force, and time on bond shear force, and process windows were defined as those parametric combinations that yielded bond shear forces of 25gf or higher. After dissolving the Cu substrate away, the etched surfaces of the Au bumps were examined for bonded areas. Au–Cu ball bonds of about 65$mu$m diameter with bond shear force values higher than 25gf were obtained on 0.06-$mu$m polished substrates, but at an optimum bonding time of 1000ms. Increase in surface roughness, however, reduced the bonding time considerably, and values as low as 200ms were sufficient to yield bond shear force values higher than 25gf on 1.0-$mu$m polished substrates. Bonding on 1.0-$mu$m polished substrates not only reduced the bonding time, but also increased the maximum bond shear force and reduced the localization of bonded areas. These results suggest that a greater number of surface asperities of sufficient height on rougher substrates provide more bonding sites and hence improve the bondability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号