首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Strained SiGe quantum well p-MOSFETs with LaLuO3 higher-k dielectric were fabricated and characterized. The strained Si/strained Si0.5Ge0.5/strained SOI heterostructure transistors showed good output and transfer characteristics with an Ion/Ioff ratio of 105. The extracted hole mobility shows an enhancement of about 2.5 times over Si universal hole mobility and no degradation compared to HfO2 or even SiO2 gate dielectric devices.  相似文献   

2.
The authors report on fully strained Si0.75Ge0.25 metal-oxide-semiconductor capacitors with HfSiO2 high-k gate dielectric and TaN metal gate fabricated on Si substrates. Fully strained Si0.75Ge0.25 films are directly grown on Si substrates below the critical thickness. HfSiO2 high-k gate dielectrics exhibit an equivalent oxide thickness of 13-18 Å with a permittivity of 17.7 and gate leakage current density lower than SiO2 gate oxides by >100×. Interfacial oxide of the HfSiO2/Si0.75Ge0.25 stack consists primarily of SiO2 with a small amount of Ge and Hf. High performance SiGe field effect transistors are highly manufacturable with excellent electrical characteristics afforded by the fully strained HfSiO2/SiGe gate stack.  相似文献   

3.
Low-frequency noise was characterized in Si0.7Ge0.3 surface channel pMOSFETs with ALD Al2O3/HfO2/Al2O3 stacks as gate dielectrics. The influences of surface treatment prior to ALD processing and thickness of the Al2O3 layer at the channel interface were investigated. The noise was of the 1/f type and could be modeled as a sum of a Hooge mobility fluctuation noise component and a number fluctuation noise component. Mobility fluctuation noise dominated the 1/f noise in strong inversion, but the number fluctuation noise component, mainly originating from traps in HfO2, also contributed closer to threshold and in weak inversion. The number fluctuation noise component was negligibly small in a device with a 2 nm thick Al2O3 layer at the SiGe channel interface, which reduced the average 1/f noise by a factor of two and decreased the device-to-device variations.  相似文献   

4.
The reliability characteristics of SiO2/ZrO2 gate dielectric stacks on strained-Si/Si0.8Ge0.2 have been investigated under dynamic and pulsed voltage stresses of different amplitude and frequency in order to analyze the transient response and the degradation of oxide as a function of stress parameters. The current transients observed in dynamic voltage stresses have been interpreted in terms of the charging/discharging of interface and bulk traps. The evolution of the current during unipolar pulsed voltage stresses shows the degradation being much faster at low frequencies than at high frequencies. Results have been compared with those obtained after CVS, as a function of injected charge and pulse frequency.  相似文献   

5.
We show that a thin epitaxial strontium oxide (SrO) interfacial layer enables scaling of titanium nitride/hafnium oxide high-permittivity (high-k) gate stacks for field-effect transistors on silicon. In a low-temperature gate-last process, SrO passivates Si against SiO2 formation and silicidation and equivalent oxide thickness (EOT) of 5 Å is achieved, with competitive leakage current and interface trap density. In a gate-first process, Sr triggers HfO2-SiO2 intermixing, forming interfacial high-k silicate containing both Sr and Hf. Combined with oxygen control techniques, we demonstrate an EOT of 6 Å with further scaling potential. In both cases, Sr incorporation results in an effective workfunction that is suitable for n-channel transistors.  相似文献   

6.
In this paper, we compare the electrical characteristics of MOS capacitors and lateral MOSFETs with oxidized Ta2Si (O-Ta2Si) as a high-k dielectric on silicon carbide or stacked on thermally grown SiO2 on SiC. MOS capacitors are used to determine the dielectric and interfacial properties of these insulators. We demonstrate that stacked SiO2/O-Ta2Si is an attractive solution for passivation of innovative SiC devices. Ta2Si deposition and oxidation is totally compatible with standard SiC MOSFET fabrication materials and processing. We demonstrate correct transistor operation for stacked O-Ta2Si on thin thermally grown SiO2 oxides. However the channel mobility of such high-k MOSFETs must be improved investigating the interface properties further.  相似文献   

7.
An organic thin-film transistor (OTFTs) having OTS/SiO2 bilayer gate insulator and MoO3/Al electrode configuration between gate insulator and source–drain (S–D) electrodes has been investigated. Thermally grown SiO2 layer is used as the OTFT gate dielectric and copper phthalocyanine (CuPc) for an active layer. We have found that using silane coupling agents, octadecyltrichlorosilane (OTS) on SiO2, surface energy of SiO2 gate dielectric is reduced; consequently, the device performance has been improved significantly. This OTS/SiO2 bilayer gate insulator configuration increases the field-effect mobility, reduces the threshold voltage and improves the on/off ratios simultaneously. The device with MoO3/Al electrode has similar source–drain current (IDS) compared to the device with Au electrode at same gate voltage. Our results indicate that using double-layer of insulator and modified electrode is an effective way to improve OTFT performance.  相似文献   

8.

Ge has been an alternative channel material for the performance enhancement of complementary metal–oxide–semiconductor (CMOS) technology applications because of its high carrier mobility and superior compatibility with Si CMOS technology. The gate structure plays a key role on the electrical property. In this paper, the property of Ge MOSFET with Al2O3/GeOx/Ge stack by ozone oxidation is reviewed. The GeOx passivation mechanism by ozone oxidation and band alignment of Al2O3/GeOx/Ge stack is described. In addition, the charge distribution in the gate stack and remote Coulomb scattering on carrier mobility is also presented. The surface passivation is mainly attributed to the high oxidation state of Ge. The energy band alignment is well explained by the gap state theory. The charge distribution is quantitatively characterized and it is found that the gate charges make a great degradation on carrier mobility. These investigations help to provide an impressive understanding and a possible instructive method to improve the performance of Ge devices.

  相似文献   

9.
This paper reports on an investigation of interface state densities, low frequency noise and electron mobility in surface channel In0.53Ga0.47As n-MOSFETs with a ZrO2 gate dielectric. Interface state density values of Dit ∼ 5 × 1012 cm−2 eV−1 were extracted using sub-threshold slope analysis and charge pumping technique. The same order of magnitude of trap density was found from low frequency noise measurements. A peak effective electron mobility of 1200 cm2/Vs has been achieved. For these surface channel In0.53Ga0.47As n-MOSFETs, it was found that η parameter, an empirical parameter used to calculate the effective electric field, was ∼0.55, and is to be comparable to the standard value found in Si device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号