首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on an investigation of interface state densities, low frequency noise and electron mobility in surface channel In0.53Ga0.47As n-MOSFETs with a ZrO2 gate dielectric. Interface state density values of Dit ∼ 5 × 1012 cm−2 eV−1 were extracted using sub-threshold slope analysis and charge pumping technique. The same order of magnitude of trap density was found from low frequency noise measurements. A peak effective electron mobility of 1200 cm2/Vs has been achieved. For these surface channel In0.53Ga0.47As n-MOSFETs, it was found that η parameter, an empirical parameter used to calculate the effective electric field, was ∼0.55, and is to be comparable to the standard value found in Si device.  相似文献   

2.
The compositional changes of InxGa1−xP graded buffer inserted between GaP substrate and subsequently grown In0.36Ga0.64P homojunction LED structure were investigated by Raman spectroscopy. The indium content of InxGa1−xP interlayers was increased in eight steps with thickness of 300 nm and constant compositional change ΔxIn between the steps. The properties of InxGa1−xP graded buffer along the structure cross-section have been studied by Raman back scattering method and the changes in GaP LO and TO phonons were investigated. Raman shift of 13 cm−1 in GaP-like LO1 phonon was measured on beveled [100]surface for compositional change of InxGa1−xP layer in the range of 0<xIn<0.32. The measurements on the cleaved edge of the sample in [011] direction revealed a strong TO phonon at 366 cm−1 and weak LO phonon peak at 405 cm−1 in GaP substrate. By reaching the graded InxGa1−xP region the intensity of TO phonon decreases and appearance of considerable TO1 phonon shift up to 350 cm−1 for In content xIn=0.16 was observed. For upper graded layers with xIn from 0.16 to 0.24 the position of GaP-like TO1 was constant and can be ascribed to relaxation of lattice mismatched thin InxGa1−xP graded upper layers in the structure.  相似文献   

3.
In this paper, we report our recent study of the effect of RuO2 as an alternative top electrode for pMOS devices to overcome the serious problems of polysilicon (poly-Si) gate depletion, high gate resistance and dopant penetration in the trend of down to 50 nm devices and beyond. The conductive oxide RuO2, prepared by RF sputtering, was investigated as the gate electrode on the Laser MBE (LMBE) fabricated HfO2 for pMOS devices. Structural, dielectric and electric properties were investigated. RuO2/HfO2/n-Si capacitors showed negligible flatband voltage shift (<10 mV), very strong breakdown strength (>10 MV cm−1). Compared to the SiO2 dielectric with the same EOT value, RuO2/HfO2/n-Si capacitors exhibited at least 4 orders of leakage current density reduction. The work function value of the RuO2 top electrode was calculated to be about 5.0 eV by two methods, and the effective fixed oxide charge density was determined to be 3.3 × 1012 cm−2. All the results above indicate that RuO2 is a promising alternative gate electrode for LMBE grown HfO2 gate dielectrics.  相似文献   

4.
5.
Comparative studies on ac/dc mobility due to the reduced dimensionality of spatially confined low dimensional systems, at the heterojunctions of GaAs/A1xGa(1−x)As and GaxIn(1−x)As/InP forming quasi-two dimensional (Q2D) and quasi-one dimensional (Q1D) systems have been made. The effect of various low temperature nonphonon scattering mechanisms such as ionized impurity, alloy disorder scattering and surface roughness scattering mechanisms; and phonon scattering mechanisms such as acoustic phonon via deformation potential and piezoelectric scattering mechanisms on the systems has been studied. It is found that the surface roughness scattering mechanism dominates in Q2D system whereas acoustic phonon scattering mechanism dominates in Q1D system due to which the nature and magnitude of the temperature dependent dc/ac mobility curves shows significant variation. Whereas, it is observed that the confinement does not change the nature of the frequency dependent real and imaginary parts of ac mobility curves. However, the mobility is found to be enhanced with effective mass and also due to the confinement, i.e. the mobility for Q1D system is higher than that for Q2D system.  相似文献   

6.
We have fabricated a pentacene based phototransistor by employing a modified nanostructured SiO2 gate dielectric. The photosensing properties of the pentacene thin film transistor fabricated on n-Si substrate with nanostructured SiO2 as gate dielectric have been investigated. The photocurrent of the transistor increases with an increase in illumination intensity. This suggests that the pentacene thin film transistor behaves as a phototransistor with p-channel characteristics. The photosensitivity and responsivity values of the transistor are 630.4 and 0.10 A/W, respectively at the off state under AM 1.5 light illumination. The field effect mobility of the pentacene phototransistor was also found to be 2.96 cm2/Vs. The nanostructured surface of the gate possibly is the cause of the high-mobility value of the phototransistor due to light scattering from the increased surface area.  相似文献   

7.
An amorphous Ba0.6Sr0.4TiO3 (BST) film with the thickness of 200 nm was deposited on indium-tin-oxide (ITO)-coated glass substrate through sol-gel route and post-annealing at 500 °C. The dielectric constant of the BST film was determined to be 20.6 at 100 kHz by measuring the Ag/BST/ITO parallel plate capacitor, and no dielectric tunability was observed with the bias voltage varying from −5 to 5 V. The BST film shows a dense and uniform microstructure as well as a smooth surface with the root-mean-square (RMS) roughness of about 1.4 nm. The leakage current density was found to be 3.5 × 10−8 A/cm2 at an applied voltage of −5 V. The transmittance of the BST/ITO/glass structure is more than 70% in the visible region. Pentacene based transistor using the as-prepared BST film as gate insulator exhibits a low threshold voltage of −1.3 V, the saturation field-effect mobility of 0.68 cm2/Vs, and the current on/off ratio of 3.6 × 105. The results indicate that the sol-gel derived BST film is a promising high-k gate dielectric for large-area transparent organic transistor arrays on glass substrate.  相似文献   

8.
Si and Se implantations have been systematically investigated in In0.53Ga0.47As. Different implant doses and various activation anneals with temperatures up to 700 °C have been examined. Raising Si implant dose from 1 × 1014 to 1 × 1015 cm−2 was found to increase the active doping concentration by about a factor of two. As confirmed by Transmission Electron Microscopy (TEM) and electrical measurements, the rest of the implanted Si ions remain as defects in the crystal and degrade the mobility. It was also confirmed from Secondary Ion Mass Spectrometry (SIMS) that the Si diffusivity in InGaAs is negligible up to 700 °C implant activation anneal making Si a suitable option for the formation of shallow junctions in InGaAs. The activation efficiency, sheet resistance, carrier density and mobility data of 25 keV Se and Si implanted InGaAs layers are also presented under various activation anneal temperatures.  相似文献   

9.
The effects of controlling InGaAs substrate temperature during electron beam deposition of HfO2 on electrical characteristics of W/HfO2/n-In0.53Ga0.47As capacitors are investigated. It is found that by depositing a thin HfO2 layer at the interface when substrate temperature is raised to 300 °C, frequency dispersion at depletion and accumulation conditions is reduced and interface state density is lowered regardless of the HfO2 thickness. Cross-sectional transmission electron microscopy images have revealed that the formation of mesoscopic voids in the InGaAs substrate near the interface is suppressed with HfO2deposition at 300 °C at the interface. A band diagram with an additional bulk trap energy level has been proposed to explain the frequency dispersion and conductance peaks at accumulation condition.  相似文献   

10.
T. Sahu  S. Palo  P. K. Nayak  N. Sahoo 《Semiconductors》2014,48(10):1318-1323
The effect of external electric field F on multisubband electron mobility μ in an In0.53Ga0.47As/In0.52Al48As double quantum well structure is analyzed. We consider scatterings due to ionized impurities, interface roughness and alloy disorder to analyze μ. The variation of scattering mechanisms as a function of F for different structure parameters shows interesting results through intersubband interactions. For small well widths, the mobility is governed by interface roughness scattering. When two subbands are occupied, the effect of impurity scattering gets enhanced through intersubband interactions. Our results of enhancement in mobility as a function of F, can be utilized for low temperature devices.  相似文献   

11.
HfO2 films were grown by atomic vapour deposition (AVD) on SiO2/Si (1 0 0) substrates. The positive shift of the flat band voltage of the HfO2 based metal-oxide-silicon (MOS) devices indicates the presence of negative fixed charges with a density of 5 × 1012 cm−2. The interface trap charge density of HfO2/SiO2 stacks can be reduced to 3 × 1011 eV−1 cm−2 near mid gap, by forming gas annealing. The extracted work function of 4.7 eV preferred the use of TiN as metal gate for PMOS transistors. TiN/HfO2/SiO2 gate stacks were integrated into gate-last-formed MOSFET structures. The extracted maximum effective mobility of HfO2 based PMOS transistors is 56 cm2/Vs.  相似文献   

12.
The HfO2 high-k thin films have been deposited on p-type (1 0 0) silicon wafer using RF magnetron sputtering technique. The XRD, AFM and Ellipsometric characterizations have been performed for crystal structure, surface morphology and thickness measurements respectively. The monoclinic structured, smooth surface HfO2 thin films with 9.45 nm thickness have been used for Al/HfO2/p-Si metal-oxide-semiconductor (MOS) structures fabrication. The fabricated Al/HfO2/Si structure have been used for extracting electrical properties viz dielectric constant, EOT, barrier height, doping concentration and interface trap density through capacitance voltage and current-voltage measurements. The dielectric constant, EOT, barrier height, effective charge carriers, interface trap density and leakage current density are determined are 22.47, 1.64 nm, 1.28 eV, 0.93 × 1010, 9.25 × 1011 cm−2 eV−1 and 9.12 × 10−6 A/cm2 respectively for annealed HfO2 thin films.  相似文献   

13.
The substrate current of high-κ dielectric MOSFETs has been studied using dc sweep and transient (down to 100 μs per I-V curve) electrical measurements. These measurements reveal trap-assisted substrate current components in addition to the traditional bell-shaped impact ionization current. By separating the transversal and lateral electric field contributions, the gate induced drain leakage (GIDL) is shown to dominate the substrate current at low gate biases. At high gate biases, tunneling of valence band electrons from the bulk to the gate dominates. The results show that the GIDL current is the result of band-to-band tunneling assisted by traps located at the HfO2/SiO2 interface and transition layer, and not the result of oxide charging.  相似文献   

14.
In this work, using Si interface passivation layer (IPL), we demonstrate n-MOSFET on p-type GaAs by varying physical-vapor-deposition (PVD) Si IPL thickness, S/D ion implantation condition, and different substrate doping concentration and post-metal annealing (PMA) condition. Using the optimized process, TaN/HfO2/GaAs n-MOSFETs made on p-GaAs substrates exhibit good electrical characteristics, equivalent oxide thickness (EOT) (∼3.7 nm), frequency dispersion (∼8%) and high maximum mobility (420 cm2/V s) with high temperature PMA (950 °C, 1 min) and good inversion.  相似文献   

15.
Annealing effects on electrical characteristics and reliability of MOS device with HfO2 or Ti/HfO2 high-k dielectric are studied in this work. For the sample with Ti/HfO2 higher-k dielectric after a post-metallization annealing (PMA) at 600 °C, its equivalent oxide thickness value is 7.6 Å and the leakage density is about 4.5 × 10−2 A/cm2. As the PMA is above 700 °C, the electrical characteristics of MOS device would be severely degraded.  相似文献   

16.
The influence of the width of the quantum well L and doping on the band structure, scattering, and electron mobility in nanoheterostructures with an isomorphic In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum well grown on an InP substrate are investigated. The quantum and transport mobilities of electrons in the dimensionally quantized subbands are determined using Shubnikov-de Haas effect measurements. These mobilities are also calculated for the case of ionized-impurity scattering taking into account intersub-band electron transitions. It is shown that ionized-impurity scattering is the dominant mechanism of electron scattering. At temperatures T < 170 K, persistent photoconductivity is observed, which is explained by the spatial separation of photoexcited charge carriers.  相似文献   

17.
A dielectric constant of 27 was demonstrated in the as deposited state of a 5 nm thick, seven layer nanolaminate stack comprising Al2O3, HfO2 and HfTiO. It reduces to an effective dielectric constant (keff) of ∼14 due to a ∼0.8 nm interfacial layer. This results in a quantum mechanical effective oxide thickness (EOT) of ∼1.15 nm. After annealing at 950 °C in an oxygen atmosphere keff reduces to ∼10 and EOT increases to 1.91 nm. A small leakage current density of about 8 × 10−7 and 1 × 10−4 A/cm2, respectively at electric field 2 and 5 MV/cm and a breakdown electric field of about 11.5 MV/cm was achieved after annealing at 950 °C.  相似文献   

18.
Pentacene organic thin-film transistors (OTFTs) using LaxTa(1−x)Oy as gate dielectric with different La contents (x = 0.227, 0.562, 0.764, 0.883) have been fabricated and compared with those using Ta oxide or La oxide. The OTFT with La0.764Ta0.236Oy can achieve a carrier mobility of 1.21 cm2 V−1s−1s, which is about 40 times and two times higher than those of the devices using Ta oxide and La oxide, respectively. As supported by XPS, AFM and noise measurement, the reasons lie in that La incorporation can suppress the formation of oxygen vacancies in Ta oxide, and Ta content can alleviate the hygroscopicity of La oxide, resulting in more passivated and smoother dielectric surface and thus larger pentacene grains, which lead to higher carrier mobility.  相似文献   

19.
We examine the effects of device scaling in both vertical and lateral dimensions for the metamorphic high electron mobility transistors (MHEMTs) on the DC and millimeter-wave electrical performances by using a hydrodynamic transport model. The well-calibrated hydrodynamic simulation for the sub-0.1-μm offset Γ-gate In0.53Ga0.47As/In0.52Al0.48As MHEMTs shows a reasonable agreement with the electrical characteristics measured from the fabricated 0.1 μm devices. We have calibrated all the parameters using the measurement data with various physical considerations to take into account the sophisticated carrier transport physics in sub-0.1-μm devices. Being simulated with these calibrated parameters, the optimum device performance is obtained at a source-drain spacing of 2 μm, a gate length of 0.05 μm, a barrier thickness of 10 nm and a channel thickness of 12 nm.  相似文献   

20.
A quantum mechanical model of electron mobility for scaled NMOS transistors with ultra-thin SiO2/HfO2 dielectrics (effective oxide thickness is less than 1 nm) and metal gate electrode is presented in this paper. The inversion layer carrier density is calculated quantum mechanically due to the consideration of high transverse electric field created in the transistor channel. The mobility model includes: (1) Coulomb scattering effect arising from the scattering centers at the semiconductor–dielectric interface, fixed charges in the high-K film and bulk impurities, and (2) surface roughness effect associated with the semiconductor–dielectric interface. The model predicts the electron mobility in MOS transistors will increase with continuous dielectric layer scaling and a fixed volume trap density assumption in high-K film. The Coulomb scattering mobility dependence on the interface trap density, fixed charges in the high-K film, interfacial oxide layer thickness and high-K film thickness is demonstrated in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号