首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Solar thermal systems are an efficient utilization of solar energy for hot water and space heating at domestic level. A Solar Water Heater (SWH) incorporating an Evacuated Glass Tube Collector (EGTC) is simulated using TRNSYS software. Efficiency parameters are pointed, and a parametric optimization method is adopted to design the system with maximum conceivable efficiency. In the first part, the selection of refrigerant for heat transportation in SWH loop is presented. A set of 15 working fluids are chosen, and their chemical properties are computed using NIST standard software (REFPROP). The selected working fluids are tested in the system under study and plots for energy gain and temperature are plotted using TRNSYS. Results showed that ammonia (NH3) having specific heat 4.6kJ/kg-K and fluid thermal conductivity 2.12 kJ/hr-m supplies peak energy gain of 7500 kJ/h in winter and 8900 kJ/h in summer season along 120 °C temperature rise. On the other hand, R-123 having specific heat 0.65kJ/kg-K and fluid thermal conductivity 0.0293kJ/hr-m showed inferior performance during the simulation. A solar-hydrogen co-generation system is also designed and simulated under low solar insolation and warm climate regions to study annual hydrogen produced by the hybrid system. System comprises main components: a PV array, an electrolyzer, a fuel cell, a battery, a hydrogen storage unit and a controller in the complete loop. Results of Hydrogen cogeneration system provide 7.8% efficiency in the cold climate of Fargo North Dakota state due to lower solar insolation. While hot climate condition of Lahore weather provides efficiency of 11.8% which satisfy the statistics found in literature.  相似文献   

2.
文章利用TRNSYS动态模拟软件研究了在我国不同建筑气候带条件下,不同类型的太阳能PV/T集热系统和普通太阳能PT集热系统的各项性能.其中,太阳能PV/T集热系统分为基于普通玻璃型太阳能PV/T集热系统和基于Low-e型太阳能PV/T集热系统.文章探究了基于普通玻璃型太阳能PV/T集热系统和基于Low-e型太阳能PV/...  相似文献   

3.
太阳能光伏光热一体化系统的实验研究   总被引:10,自引:5,他引:10  
为提高太阳能的利用率同时得到可资利用的热水和电力,将小型贮能式光伏系统与家用平板型太阳能热水器结合起来,把光优电池组件层压在热水器的扁盒式铝合金集热板上,构成一套光优光热(PV/T)一体化系统,并在合肥地区进行了自然循环模式下的光电光热性能测试。实验结果表明,在晴朗或多云的天气条件下实验系统日平均热效率可达40%,日平均发电效率约9.5%,系统综合性能效率多在60%以上,比单独的光伏或热水系统效率有显著提高。  相似文献   

4.
为解决太阳电池的发电效率随温度升高而下降以及地源热泵系统供热引起的土壤热失衡问题,以典型居住建筑的光伏/光热-地源热泵(PV/T-GSHP)联合供热系统为研究对象,基于TRNSYS软件,采用土壤温度、地源热泵机组季节能效比、光伏发电效率和太阳能保证率为评价指标,对该联合供热系统进行运行性能分析。研究结果表明:夏热冬冷地区(以长沙为例)太阳能保证率相对较高,PV/T组件面积为满屋顶最大化安装(900 m2)时,第20年末土壤温度相比初始地温仅升高0.8 ℃,热泵机组季节能效比约为5.1,太阳能保证率为97.0%~98.7%;不同气候地区的太阳能保证率与PV/T组件面积和建筑全年累计供热量有关,通过定义单位建筑全年累计供热量PV/T组件面积指标,得到中国不同气候地区的太阳能保证率与该指标的耦合关系,回归方程的决定系数R2为0.983,得出在已知建筑全年累计供热量和太阳保证率设计目标值的条件下所需PV/T组件面积的计算方法。PV/T-GSHP联合供热系统的全年运行能耗显著小于平板太阳能集热器-地源热泵联合系统(最小降幅为沈阳,49.7%),远小于空气源热泵(最小降幅为石家庄,79.8%)和燃气壁挂炉(最小降幅为沈阳,65.1%)。  相似文献   

5.
Solar energy utilization for domestic hot water and house heating is investigated in this paper. The TRNSYS program is used for system simulation. The annual solar fraction of such a system is 0.80 in the West Bank. Solar heating can save up to 28% of the conventional annual heating cost.  相似文献   

6.
G. Fraisse  C. Mnzo  K. Johannes 《Solar Energy》2007,81(11):1426-1438
The integration of photovoltaic (PV) modules in buildings allows one to consider a multifunctional frame and then to reduce the cost by substitution of components. In order to limit the rise of the cell operating temperature, a photovoltaics/thermal (PV/T) collector combines a solar water heating collector and PV cells. The recovered heat energy can be used for heating systems and domestic hot water. A combination with a Direct Solar Floor is studied. Its low operating temperature level is appropriate for the operating conditions of the mono- or poly-crystalline photovoltaic modules which are selected in that study. However, for a system including a glass covered collector and localised in Mâcon area in France, we show that the annual photovoltaic cell efficiency is 6.8% which represents a decrease of 28% in comparison with a conventional non-integrated PV module of 9.4% annual efficiency. This is obviously due to a temperature increase related to the cover. On the other hand, we show that without a glass cover, the efficiency is 10% which is 6% better than a standard module due to the cooling effect.Moreover, in the case of a glazed PV/T collector with a conventional control system for Direct Solar Floor, the maximum temperature reached at the level of the PV modules is higher than 100 °C. This is due to the oversize of the collectors during the summer when the heating needs are null, i.e. without a heated swimming pool for example. This temperature level does not allow the use of EVA resin (ethylene vinyl acetate) in PV modules due to strong risks of degradation. The current solution consists of using amorphous cells or, if we do not enhance the thermal production, uncovered PV/T collector. Further research led to water hybrid PV/T solar collectors as a one-piece component, both reliable and efficient, and including the thermal absorber, the heat exchanger and the photovoltaic functions.  相似文献   

7.
In this study, the hydrogen production performance of a reactor assisted by a solar pond by photoelectrochemical method is examined conceptually. The main components of the new integrated system are a solar pond, a photovoltaic panel (PV) and a hybrid chlor-alkali reactor which consists of a semiconductor anot, photocathode and cation exchange membrane. The proposed system produces hydrogen via water splitting reaction and also yields the by products namely chlorine and sodium hydroxide while consumes saturated NaCl solution and pure water. In order to increase the efficiency of the reactor, the saturated hot NaCl solution at the heat storage zone (HSZ) of the solar pond is transferred to the anot section and the heated pure water by heat exchanger in the HSZ is transferred to cathode section. The photoelectrode releases electrons for hydrogen production with diminishing the power requirement from the PV panel that is used as a source of electrical energy for the electrolysis. The results confirm that the thermal performance of the solar pond plays a key role on the hydrogen production efficiency of the reactor.  相似文献   

8.
The TRNSYS XST-model for the calculation of the thermal behaviour of ground buried hot water heat stores was validated. For the validation procedure measured data of the seasonal hot water heat store in Hannover (Germany) were used. In contrast to previous investigations the temperatures of the surrounding ground were also taken into consideration. The determination of the heat store parameters was carried out using TRNSYS in combination with the parameter identification software DF. The deviation between measured and calculated temperatures is less than ±3%. The measured and calculated heat quantities are also in good agreement (annual deviation less than 2%). The validated XST-model was integrated into a TRNSYS model to calculate the thermal behaviour of the solar assisted district heating system in Hannover in 2002. The deviations between measured and calculated heat quantities do not exceed 5%.  相似文献   

9.
Performance evaluation of solar photovoltaic/thermal systems   总被引:6,自引:0,他引:6  
The major purpose of the present study is to understand the performance of an integrated photovoltaic and thermal solar system (IPVTS) as compared to a conventional solar water heater and to demonstrate the idea of an IPVTS design. A commercial polycrystalline PV module is used for making a PV/T collector. The PV/T collector is used to build an IPVTS. The test results show that the solar PV/T collector made from a corrugated polycarbonate panel can obtain a good thermal efficiency. The present study introduces the concept of primary-energy saving efficiency for the evaluation of a PV/T system. The primary-energy saving efficiency of the present IPVTS exceeds 0.60. This is higher than for a pure solar hot water heater or a pure PV system. The characteristic daily efficiency ηs* reaches 0.38 which is about 76% of the value for a conventional solar hot water heater using glazed collectors (ηs*=0.50). The performance of a PV/T collector can be improved if the heat-collecting plate, the PV cells and the glass cover are directly packed together to form a glazed collector. The manufacturing cost of the PV/T collector and the system cost of the IPVTS can also be reduced. The present study shows that the idea of IPVTS is economically feasible too.  相似文献   

10.
The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic–thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab.PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional “side-by-side” thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-familiar residency in Lisbon, with p-Si cells, and a collector area of 6 m2. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well.The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages.  相似文献   

11.
The article presents how to increase electrical efficiency and power output of photovoltaic (PV) panel with the use of a phase change material (PCM). The focus of the work is in experimental setup and simulation heat extraction from the PV panel with the use of TRNSYS software. A modification of PV panel Canadian Solar CS6P-M was made with a phase change material RT28HC. The actual data of cell temperature of a PV panel with and without PCM were given and compared. A simulation of both PV panels in TRNSYS software was performed, followed by the comparison of results with the simulation and experimental actual data. The experimental results show that the maximum temperature difference on the surface of PV panel without PCM was 35.6 °C higher than on a panel with PCM in a period of one day. Referring to experimental results the calculation of the maximum and average increase of electrical efficiency was made for PV-PCM panel with TRNSYS software. Final results of simulation shows that the electricity production of PV-PCM panel for a city of Ljubljana was higher for 7.3% in a period of one year.  相似文献   

12.
An attempt has been made to utilise solar energy more efficiently by developing the single pass hybrid photovoltaic thermal system at the climatic condition of Bangladesh. As the electric energy conversion efficiency of the photovoltaic module falls with the surrounding temperature and air or water used as a suitable solution to make it cool. In this study, air was used as the cooling medium for the solar panel and circular copper tube was placed on the glazed collector for water heating to ensure maximum exploitation of solar energy. Moreover, the photovoltaic panel power was used to circulate the air and make the system self-powered. Maximum collector efficiency was 24.64% for water and 11.20% for air is observed at a mass flow rate 0.00158 and 0.00221 kg/s for water and air respectively at a solar radiation of 1050 W/m2. In addition, the combined efficiency of the hybrid system was about 39.68%. By adding glycerin with water at a ratio of 50:1 (% of weight) the combined efficiency reached up to 45.76%. The computational fluid dynamics (CFD) simulation and economic analysis of the designed system strongly support the feasibility of the solar hybrid photovoltaic thermal system as the future sustainable energy source.  相似文献   

13.
An effective way of improving efficiency and reducing the rate of thermal degradation of a photovoltaic (PV) module is by reducing the operating temperature of its surface. This can be achieved by cooling the module and reducing the heat stored inside the PV cells during operation. In this paper, long-term performance modeling of a proposed solar-water pumping system is carried out. The system, which is used for irrigation purposes, consists of a PV module cooled by water, a submersible water pump, and a water storage tank. Cooling of the PV panel is achieved by introducing water trickling configuration on the upper surface of the panel. An experimental rig is developed to investigate and evaluate PV module performance with the proposed cooling technique. The experimental results indicated that due to the heat loss by convection between water and the PV panel's upper surface, an increase of about 15% in system output is achieved at peak radiation conditions. Long-term performance of the system is estimated by integrating test results in a commercial transient simulation package using site radiation and ambient temperature data. The simulation results of the system's annual performance indicated that an increase of 5% in delivered energy from the PV module can be achieved during dry and warm seasons.  相似文献   

14.
In the present investigation a theoretical analysis has been presented for the modelling of thermal and electrical processes of a hybrid PV/T air heating collector coupled with a compound parabolic concentrator (CPC). In this design, several CPC troughs are combined in a single PV/T collector panel. The absorber of the hybrid PV/T collector under investigation consists of an array of solar cells for generation of electricity, while collector fluid circulating past the absorber provides useful thermal energy as in a conventional flat plate collector. In the analysis, it is assumed that solar cell efficiency can be represented by a linear decreasing function of its temperature. Energy balance equations have been developed for the various components of the system. Based on the developed analysis, both thermal and electrical performance of the system as a function of system design parameters are presented and discussed. Results have been presented to compare the performance of hybrid PV/T collector coupled with and without CPC. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
《Applied Thermal Engineering》2007,27(8-9):1259-1270
Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 °C and 80 °C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio.  相似文献   

16.
一种新型全铝扁盒式PV/T热水系统   总被引:3,自引:0,他引:3  
将单晶硅光伏电池与全铝扁盒式太阳能热水器集热板通过特殊工艺粘结起来,制成了一套自然循环式光伏光热一体化(PV/T)系统,在利用太阳能发电的同时提供热水。于04年7月-10月在合肥地区进行了室外实验,测试并讨论了该系统以不同水量和不同初始水温运行时的光电光热性能。结果表明,当m/Ac>80kg/m2时,这种PV/T热水系统的发电效率在10.15%左右,热效率在50%左右,光电光热总效率可以达到60%左右,光电光热综合性能效率可以达到70%左右。相对于单纯的光伏系统或自然循环式太阳能热水系统,这种PV/T热水系统具有占地面积小、综合效率高等优点。  相似文献   

17.
In this paper, the TRNSYS Simulation Program is used to investigate the monthly and annual solar fraction of a Thermosyphon Solar Water Heater and to evaluate its economic viability in terms of its life cycle savings over a conventional water heating system. The results of the simulation indicate that the yearly solar contribution of the system ranges from 63% for a high hot water consumption profile to 89% for a low consumption pattern. The payback period of the system is as low as 3 years when compared to electric water heating systems. As long as the competitor is diesel oil, the payback period increases to 7–9 years, depending on the hot water consumption profile used.  相似文献   

18.
The efficiency of photovoltaic (PV) panel drops with increase in cell temperature. The temperature of the PV panel can be controlled with various cooling techniques. In the proposed work the PV panel is cooled by circulating water and the recovered heat energy is used to run a humidification and dehumidification desalination to produce distilled water from sea water (or) brackish water. This work deals with a detailed analysis of performance of combined power and desalination (Photovoltaic/Thermal–Humidification and Dehumidification) system. A mathematical model of PV/thermal–humidification dehumidification plant was developed and simulations were carried out in MATLAB environment. The performance of photovoltaic/ thermal desalination (Photovoltaic/Thermal–Humidification and Dehumidification) system was investigated under various solar radiation levels (800–1000 W/m2). For each solar radiation level the effect of mass flow rate of coolant water (30–110 kg/h) on water outlet temperature, PV efficiency, PVT thermal efficiency, distilled water production, and plant efficiency was studied. Results show that under each solar radiation level increasing coolant flow rate increases efficiency of PV panel and reduces the plant efficiency. The highest PV efficiency (16.598%) was reached under 800 W/m2 at mass flow rate of 110 kg/h and the highest plant efficiency (43.15%) was reached under 800 W/m2 at a mass flow rate of 30 kg/h. The maximum amount of distilled water production rate (0.82 L/h) was reached under 1000 W/m2 at water mass flow rate of 30 kg/h.  相似文献   

19.
In this technical article, a novel experimental setup is designed and proposed to produce a hydrogen by using solar energy. This system comprises a hybrid or photovoltaic Thermal (PVT) solar collector, Hoffman's voltameter, heat exchanger unit and Phase Change Material (PCM). The effect of PCM and mass flow rate of water on the hybrid solar collector efficiency and hydrogen yield rate is studied. This experimental results clearly showed that by adding the thermal collector with water, decreases PV module temperature by 20.5% compared with conventional PV module. Based on the measured values, at 12.00 and 0.011 kg/s mass flow rate, about 33.8% of thermal efficiency is obtained for water based hybrid solar collector. Similarly, by adding Paraffin PCM to the water based thermal collector, the maximum electrical efficiency of 9.1% is achieved. From this study, the average value of 17.12% and 18.61% hydrogen yield rate is attained for PVT/water and PVT/water with PCM systems respectively.  相似文献   

20.
The efficiency of an electrolyzer can be improved by preheating the water consumed, which is generally done by means of solar energy in PVT panels. In this research, the first objective is to determine whether it is possible to preheat the consumed water by using the residual heat given off by the electrolyzer itself fed by a PV array, and if the above is met, the second objective consists of quantify the benefits obtained in the performance of the system. The simulation is carried out over a period of one year, considering the meteorological conditions of the city of Antofagasta, Chile. The results indicate that it is possible to constantly maintain the water temperature consumed by the electrolyzer at its nominal value of 80 °C, since the energy contained in the waste heat is about 30 times higher than this hot water demand. Continuous operation at 80 °C compared to operation at variable temperature achieves an annual increase of 0.22% in hydrogen production and an average of 0.33% in electrolyzer efficiency. Moreover, by considering the thermal energy given off by the electrolyzer as useful output of the system, the overall energy efficiency increases by a relative percentage of 13%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号