首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fission yeast Schizosaccharomyces pombe is auxotrophic for biotin (vitamin H) and growth depends on biotin uptake over the plasma membrane. Here a biotin transport mutant of Saccharomyces cerevisiae is used to identify the vht1(+) gene encoding the Schizosaccharomyces pombe plasma membrane transport protein for biotin. SpVht1p belongs to the family of allantoate transporters and has only little sequence homology to the S. cerevisiae biotin transporter. Although having dissimilar primary structures, the biotin transporters in Sz. pombe and S. cerevisiae share similar biochemical properties and regulation. Like in S. cerevisiae, biotin uptake in Sz. pombe is a high-affinity process, is optimal at acidic pH values and inhibited by protonophores, indicating that SpVht1p acts as a proton-biotin symporter. Desthiobiotin, the metabolic precursor of biotin, is also imported by SpVht1p. Deletion of vht1(+) abolishes growth on low external concentrations of the vitamin, showing that vht1(+) encodes the only protein that mediates biotin uptake in Sz. pombe. Expression of vht1(+) is maximal at low external biotin concentrations, indicating that Sz. pombe can adjust the rate of biotin uptake to meet the requirement for the vitamin.  相似文献   

2.
Endoplasmic reticulum oxidoreductins (Ero proteins) are essential for oxidation of protein disulphide isomerase (Pdi), which introduces disulphide bonds in target proteins. Contrary to the situation in Saccharomyces cerevisiae, with a single Ero protein (Ero1p), the genomes of Schizosaccharomyces pombe and of humans encode two Ero-like proteins. Here we show that both Sz. pombe proteins (SpEro1a p and SpEro1b p) are N-glycosylated and firmly associated with membranes of the secretory pathway. Surprisingly, only expression of SpEro1b p completely restores growth of the temperature-sensitive S. cerevisiae ero1-1 mutant, whereas SpEro1a p only partially complements this mutation. Upon expression in S. cerevisiae wild-type cells, SpEro1b p leads to a significantly increased resistance to reductive stress by dithiothreitol, whereas SpEro1a p has only a marginal effect. These data suggest that SpEro1b p is a functional homologue of the S. cerevisiae Ero1p.  相似文献   

3.
Lipomyces kononenkoae secretes a battery of highly effective amylases (i.e. alpha-amylase, glucoamylase, isoamylase and cyclomaltodextrin glucanotransferase activities) and is therefore considered as one of the most efficient raw starch-degrading yeasts known. Previously, we have cloned and characterized genomic and cDNA copies of the LKA1 alpha-amylase gene from L. kononenkoae IGC4052B (CBS5608T) and expressed them in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Here we report on the cloning and characterization of the genomic and cDNA copies of a second alpha-amylase gene (LKA2) from the same strain of L. kononenkoae. LKA2 was cloned initially as a 1663 bp cDNA harbouring an open reading frame (ORF) of 1496 nucleotides. Sequence analysis of LKA2 revealed that this ORF encodes a protein (Lka2p) of 499 amino acids, with a predicted molecular weight of 55,307 Da. The LKA2-encoded alpha-amylase showed significant homology to several bacterial cyclomaltodextrin glucanotransferases and also to the alpha-amylases of Aspergillus nidulans, Debaryomyces occidentalis, Saccharomycopsis fibuligera and Sz. pombe. When LKA2 was expressed under the control of the phosphoglycerate kinase gene promoter (PGK1(p)) in S. cerevisiae, it was found that the genomic copy contained a 55 bp intron that impaired the production of biologically active Lka2p in the heterologous host. In contrast to the genomic copy, the expression of the cDNA construct of PGK1p-LKA2 in S. cerevisiae resulted in the production of biologically active alpha-amylase. The LKA2-encoded alpha-amylase produced by S. cerevisiae exhibited a high specificity towards substrates containing alpha-1,4 glucosidic linkages. The optimum pH of Lka2p was found to be 3.5 and the optimum temperature was 60 degrees C. Besides LKA1, LKA2 is only the second L. kononenkoae gene ever cloned and expressed in S. cerevisiae. The cloning, characterization and co-expression of these two genes encoding these highly efficient alpha-amylases form an important part of an extensive research programme aimed at the development of amylolytic strains of S. cerevisiae for the efficient bioconversion of starch into commercially important commodities.  相似文献   

4.
Genome-wide identification of fungal GPI proteins   总被引:17,自引:0,他引:17  
Glycosylphosphatidylinositol-modified (GPI) proteins share structural features that allow their identification using a genomic approach. From the known S. cerevisiae and C. albicans GPI proteins, the following consensus sequence for the GPI attachment site and its downstream region was derived: [NSGDAC]-[GASVIETKDLF]-[GASV]-X(4,19)-[FILMVAGPSTCYWN](10)>, where > indicates the C-terminal end of the protein. This consensus sequence, which recognized known GPI proteins from various fungi, was used to screen the genomes of the yeasts S. cerevisiae, C. albicans, Sz. pombe and the filamentous fungus N. crassa for putative GPI proteins. The subsets of proteins so obtained were further screened for the presence of an N-terminal signal sequence for the secretion and absence of internal transmembrane domains. In this way, we identified 66 putative GPI proteins in S. cerevisiae. Some of these are known GPI proteins that were not identified by earlier genomic analyses, indicating that this selection procedure renders a more complete image of the S. cerevisiae GPI proteome. Using the same approach, 104 putative GPI proteins were identified in the human pathogen C. albicans. Among these were the proteins Gas/Phr, Ecm33, Crh and Plb, all members of GPI protein families that are also present in S. cerevisiae. In addition, several proteins and protein families with no significant homology to S. cerevisiae proteins were identified, including the cell wall-associated Als, Csa1/Rbt5, Hwp1/Rbt1 and Hyr1 protein families. In Sz. pombe, which has a low level of (galacto)mannan in the cell wall compared to C. albicans and S. cerevisiae, only 33 GPI candidates were identified and in N. crassa 97. BLAST searches revealed that about half of the putative GPI proteins that were identified in Sz. pombe and N. crassa are homologous to known or putative GPI proteins from other fungi. We conclude that our algorithm is selective and can also be used for GPI protein identification in other fungi.  相似文献   

5.
The gene putatively encoding alpha-aminoadipate reductase (AAR) was isolated successfully by degenerate PCR and chromosome walking, based on cassette PCR methods, from the dimorphous yeast Saccharomycopsis fibuligera PD70 and was named SfLYS2. Sequence analysis revealed that it contained a putative open reading frame (ORF) of 4161 bp and encoded a polypeptide of 1386 amino acids. The deduced translation product shared an identity of 53% and 51% to the Lys2p homologues of Candida albicans and Saccharomyces cerevisiae, respectively. An atypical TATA box and a GCN4-box element were found in the 5'-upstream region. Genomic Southern hybridization suggested the presence of a single locus of SfLYS2 in the S. fibuligera genome. Expression of the ORF of SfLYS2 in a lys2(-) strain of S. cerevisiae could functionally complement the lysine mutant of the S. cerevisiae strain. S. fibuligera could use lysine as the sole nitrogen source but its growth was inhibited on the alpha-aminoadipate (AA) medium. Approximately 90% of the mutants of S. cerevisiae resistant to AA are lysine auxotrophs; in contrast all the mutants of S. fibuligera resistant to AA recovered in this work were not lysine auxotrophs.  相似文献   

6.
7.
We isolated a Schizosaccharomyces pombe (Sz. pombe) gene encoding the counterpart of the TFIIH subunit Homo sapiens (H. sapiens) p44 and Saccharomyces cerevisiae (S. cerevisiae) SSL1, and we named this gene product p47. Contrary to the case of SSL1, which is an essential gene of S. cerevisiae, p47 is not essential for the viability of Sz. pombe. The deduced amino acid sequence revealed that this TFIIH subunit is highly conserved during evolution. Comparison of the primary structures revealed differences in the predicted positions of introns in the Caenorhabditis elegans (C. elegans) gene encoding the p47 counterpart found during the genome project. A charged cluster in the N-terminal region is present in the two yeasts. Two putative zinc-binding motifs, an extended C2H2 zinc finger with a 'C8 motif' and a second putative zinc-binding motif common to the two TFIIH subunits, were also found, the former being completely conserved. The latter motif consists of five cysteine residues and is also present in hp44, SSL1 and another TFIIH subunit, human p34 (hp34). Since one zinc atom can bind to four ligands in zinc-binding motifs, the conservation of cysteine residues was given attention. This motif is completely conserved in p47 homologues derived from the four species. As one cysteine residue is not conserved among the homologues of hp34, the consensus of this motif is concluded to be Cys X2-Cys-X(10,12)-Cys-X2-Cys. This nucleotide sequence has been deposited in the GenBank Data Library under Accession Number AF017646.  相似文献   

8.
The cell wall of Schizosaccharomyces pombe is bilayered, consisting of an inner layer of mainly polysaccharides and an outer layer of galactomannoproteins. We present a detailed analysis of the cell wall proteome. Six covalently-bound cell wall proteins (CWPs) were identified using tandem mass spectrometry, including four predicted GPI-dependent CWPs (Gas1p, Gas5p, Ecm33p and Pwp1p) and two alkali-sensitive CWPs (Psu1p and Asl1p). Gas1p and Gas5p belong to glycoside hydrolase family 72, and are believed to be involved in 1,3-beta-glucan elongation. Ecm33p belongs to a ubiquitous fungal protein family with an unknown but crucial function in cell wall integrity. Pwp1p is an abundant protein with an unknown but probably non-enzymatic function. All four CWPs were present in HF-pyridine extracts, indicating that they are linked via a phosphodiester bridge to the glucan network. Psu1p is a homologue of the Saccharomyces cerevisiae Sun family, whereas Asl1p has no homologues in S. cerevisiae but is related to Aspergillus fumigatus and Ustilago maydis proteins. Finally, although the protein content of Sz. pombe cell walls is only slightly less than in S. cerevisiae and Candida albicans, the amount of carbohydrate added to the proteins was found to be two- to three-fold decreased, consistent with earlier reported differences in outer chain N-glycosylation.  相似文献   

9.
We have isolated the Pichia sorbitophila LYS2 (PsLYS2) gene by complementation of a lys2 Saccharomyces cerevisiae mutant. The sequenced DNA fragment contains a putative ORF of 4197 bp and the deduced translation product shares a global identity of 66% and 58% to the Lys2 protein homologues of Candida albicans and S. cerevisiae, respectively. Analysis of PsLYS2 sequence suggests that, similarly to S. cerevisiae LYS2, it codes for a polypeptide having two separate enzymatic activities which reside in different domains of the protein, including an adenylate domain, an acyl-carrier site and a short-chain reductase domain. Several GCN4- and NIT2-binding motifs have been matched in the promotor sequence of PsLYS2. In addition, upstream of the sequenced PsLYS2 sequence, we have found the 3'-terminal half of a gene of same orientation encoding a RAD16-like protein, a genomic organization similar to that of C. albicans.  相似文献   

10.
In a screen for Candida albicans genes capable of supressing a ste20Delta mutation in Saccharomyces cerevisiae, a homologue of the exportin-encoding gene CRM1 was isolated. The CaCRM1 gene codes for a protein of 1079 amino acids with a predicted molecular weight of 124 029 and isoelectric point of 5.04. Crm1p from C. albicans displays significant amino acid sequence homology with Crm1p from Saccharomyces cerevisiae (65% identity, 74% similarity), Schizosaccharomyces pombe (55% identity, 66% similarity), Caenorhabditis elegans (45% identity, 57% similarity), and Homo sapiens (48% identity, 59% similarity). Interestingly, CaCRM1 encodes a threonine rather than a cysteine at position 533 in the conserved central region, suggesting that CaCrm1p is leptomycin B-insensitive, like S. cerevisiae Crm1p. CaCRM1 on a high copy vector can complement a thermosensitive allele of CRM1 (xpo1-1) in S. cerevisiae, showing that CaCrm1p and S. cerevisiae Crm1p are functionally conserved. Southern blot analysis suggests that CaCRM1 is present at a single locus within the C. albicans genome. The nucleotide sequence of the CaCRM1 gene has been deposited at GenBank under Accession No. AF178855.  相似文献   

11.
From the fission yeast Schizosaccharomyces pombe we have identified and deleted vps33, a gene encoding a homologue of VPS33, which is required for vacuolar biogenesis in S. cerevisiae cells. When the vps33(+) gene is disrupted, Sz. pombe strains are temperature-sensitive for growth and contain numerous small vesicular structures stained with FM4-64 in the cells. Deletion of the Sz. pombe vps33(+) gene results in pleiotropic phenotypes consistent with the absence of normal vacuoles, including missorting of vacuolar carboxypeptidase Y, various ion- and drug-sensitivities, and sporulation defects. These results are consistent with Vps33p being necessary for the morphogenesis of vacuoles and subsequent expression of vacuolar functions in Sz. pombe cells.  相似文献   

12.
Galactosylation of glycoproteins in the fission yeast Schizosaccharomyces pombe requires the transport of UDP-galactose as substrate for the galactosyltransferase into the lumen of the Golgi apparatus, which is achieved by the UDP-galactose transporter. We isolated a mutant (gms1) that is deficient in galactosylation of cell surface glycoproteins in Sz.pombe, and found that the gms1(+) gene encodes a UDP-galactose transporter. In the prediction of secondary structure of the Gms1 protein, an eight-membrane-spanning structure was obtained. Fluorescent microscopy revealed the functional Gms1-GFP fusion protein to be stably localized at the Golgi membrane. Sequencing analysis of the coding region of Gms1p derived from galactosylation-defective mutants identified a single amino acid mutation (A102T or A258E) located within the putative transmembrane region, helix 2 or helix 7, respectively. The mutagenized Gms1(A102T or A258E)p exhibited loss of UDP-galactose transport activity but no change in the localization to the Golgi membrane. The C-terminal truncated Gms1p mutants demonstrated that the C-terminal hydrophilic region was dispensable for targeting and function as UDP-galactose transporter at the Golgi membrane.We suggest that the putative eighth (the most C-terminus-proximal) transmembrane helix of Gms1p is critical to targeting from ER to the Golgi membrane.  相似文献   

13.
The gene pzl-1 from the filamentous fungus Neurospora crassa encodes a putative Ser/Thr protein phosphatase that is reminiscent of the Ppz1/Ppz2 and Pzh1 phosphatases from Saccharomyces cerevisiae and Schizosaccharomyces pombe, respectively. The entire PZL-1 protein, as well as its carboxyl-terminal domain, have been expressed in Escherichia coli as active protein phosphatases. To characterize its cellular role, PZL-1 was also expressed in Sz. pombe and in S. cerevisiae. Expression of PZL-1 in S. cerevisiae from the PPZ1 promoter was able to rescue the altered sensitivity to caffeine and lithium ions of a ppz1 strain. Furthermore, high copy number expression of PZL-1 alleviated the lytic phenotype of a S. cerevisiae slt2/mpk1 mitogen-activated protein (MAP) kinase mutant, similarly to that described for PPZ1, and mimicked the effects of high levels of Ppz1 on cell growth. Expression of PZL-1 in fission yeast from a weak version of the nmt1 promoter fully rescued the growth defect of a pzh1Delta strain in high potassium, but only partially complemented the sodium-hypertolerant phenotype. Strong overexpression of the N. crassa phosphatase in Sz. pombe affected cell growth and morphology. Therefore, PZL-1 appears to fulfil every known function carried out by its S. cerevisiae counterpart, despite the marked divergence in sequence within their NH(2)-terminal moieties.  相似文献   

14.
15.
A novel family of small proteins, termed p14.5 or YERO57c/YJGFc, has been identified. Independent studies indicate that p14.5 family members are multifunctional proteins involved in several pathways, e.g. regulation of translation or activation of the protease mu-calpain. We have previously shown that Mmf1p, a p14.5 of the budding yeast Saccharomyces cerevisiae, is localized in the mitochondria and influences mitochondrial DNA stability. In addition, we have demonstrated that Mmf1p is functionally related to p14.5 of mammalian cells. To explore further the evolutionary conservation of the mitochondrial function(s) of the p14.5s we have extended our study to the fission yeast, Schizosaccharomyces pombe. In this organism two p14.5 homologous proteins are present: Pmf1p (pombe mitochondrial factor 1) and Hpm1p (homologous Pmf1p factor 1). We have generated a specific Pmf1p antibody, which recognizes a single band of approximately 15 kDa in total cellular extracts. Cellular fractionation experiments indicate that Pmf1p localizes in the mitochondria as well as in the cytoplasm. We also show that Pmf1p shares several properties of S. cerevisiae Mmf1p. Indeed, Pmf1p restores the wild-type phenotype when expressed in delta mmf1 S. cerevisiae cells. Deletion of the leader sequence of Pmf1p abrogates its ability to localize in mitochondria and to functionally replace Mmf1p. Thus, these data together with our previous study show that the mitochondrial function(s) of the p14.5 family members are highly conserved in eukaryotic cells.  相似文献   

16.
Novel MX cassettes are described that contain the open reading frames (ORFs) of Saccharomyces cerevisiae or Candida albicans LYS5. The LYS5MX and CaLYS5MX cassettes, the targeting efficiencies of which are equivalent to those of other MX cassettes, are positively selected for Lys+ in a lys5 background. Unlike most of the other MX cassettes, the LYS5MX cassettes are also negatively selectable (alpha-aminoadipate-resistant), which will allow the use of the LYS5MX cassettes in plasmid shuffling and will also greatly facilitate marker recycling.  相似文献   

17.
Recombinant strains of Saccharomyces cerevisiae with the ability to reduce wine acidity could have a significant influence on the future production of quality wines, especially in cool climate regions. L-Malic acid and L-tartaric acid contribute largely to the acid content of grapes and wine. The wine yeast S. cerevisiae is unable to effectively degrade L-malic acid, whereas the fission yeast Schizosaccharomyces pombe efficiently degrades high concentrations of L-malic acid by means of a malo-ethanolic fermentation. However, strains of Sz. pombe are not suitable for vinification due to the production of undesirable off-flavours. Heterologous expression of the Sz. pombe malate permease (mae1) and malic enzyme (mae2) genes on plasmids in S. cerevisiae resulted in a recombinant strain of S. cerevisiae that efficiently degraded up to 8 g/l L-malic acid in synthetic grape must and 6.75 g/l L-malic acid in Chardonnay grape must. Furthermore, a strain of S. cerevisiae containing the mae1 and mae2 genes integrated in the genome efficiently degraded 5 g/l of L-malic acid in synthetic and Chenin Blanc grape musts. Furthermore, the malo-alcoholic strains produced higher levels of ethanol during fermentation, which is important for the production of distilled beverages.  相似文献   

18.
To extend the tools available for biochemical and genetical analysis in the fission yeast Schizosaccharomyces pombe we have investigated the development of gene reporter systems using the secreted alpha-galactosidase encoded by the Sz. pombe ORF SPAC869.07c (CAB60017), which we propose naming Mel1p to reflect its structural and functional similarity to MEL1p in Saccharomyces cerevisiae. The alpha-galactosidase activity can be monitored in liquid assays and converted the colourless substrate 5-bromo-4-chloro-3-indolyl-alpha-D-galactopyranoside (X-alpha-gal) into an insoluble blue product that was suitable for semi quantitative plate-based assays; colonies expressing the highest levels of alpha-galactosidase developed the most intense blue colour. Unlike assays based on beta-galactosidase, the Sz. pombe colonies develop the blue colouration under normal growth conditions, avoiding the need to replicate colonies to fresh plates for analysis. It is therefore suitable for screening large numbers of colonies. To illustrate the use of mel1 as a reporter we linked expression to the sxa2 gene promoter to provide a convenient readout for signalling through the pheromone response pathway. The sxa2 > mel1 strain identified constitutively active Mam2 pheromone receptors from a randomly mutagenised library. There was an approximate correlation between the intensity of the blue colour developed by each mutant colony and its level of constitutive activity and we identified a subset of mutants with low constitutive activity that could not have been isolated by a previous screen using nutritional selection. The mel1 alpha-galactosidase activity identified and characterised in this study can be easily adapted to provide a gene reporter for many biological processes and is a new addition to the research tools available in Sz. pombe.  相似文献   

19.
The Saccharomyces cerevisiae RPS0 A and B genes encode proteins essential for maturation of the 40S ribosomal subunit precursors. We have isolated a homologue of the RPS0 gene from Candida tropicalis, which we named CtRPS0. The C. tropicalis RPS0 encodes a protein of 261 amino acid residues with a predicted molecular weight of 28.65 kDa and an isoelectric point of 4.79. CtRps0p displays significant amino acid sequence homology with Rps0p from C. albicans, S. cerevisiae, Neurospora crassa, Schizosaccharomyces pombe, Pneumocystis carinii and higher organisms, such as human, mouse and rat. CtRPS0 on a high copy number vector can complement the lethal phenotype linked to the disruption of both RPS0 genes in S. cerevisiae. Southern blot analysis suggests that CtRPS0 is present at a single locus within the C. tropicalis genome.  相似文献   

20.
The cyclophilin repertoire of the fission yeast Schizosaccharomyces pombe is comprised of nine members that are distributed over all three of its chromosomes and range from small single-domain to large multi-domain proteins. Each cyclophilin possesses only a single prolyl-isomerase domain, and these vary in their degree of consensus, including at positions that are likely to affect their drug-binding ability and catalytic activity. The additional identified motifs are involved in putative protein or RNA interactions, while a novel domain that is specific to SpCyp7 and its orthologues may have functions that include an interaction with hnRNPs. The Sz. pombe cyclophilins are found throughout the cell but appear to be absent from the mitochondria, which is unique among the characterized eukaryotic repertoires. SpCyp5, SpCyp6 and SpCyp8 have exhibited significant upregulation of their expression during the meiotic cycle and SpCyp5 has exhibited significant upregulation of its expression during heat stress. All nine have identified members in the repertoires of H. sapiens, D. melanogaster and A. thaliana. However, only three identified members in the cyclophilin repertoire of S. cerevisiae with SpCyp7 identifying a fourth protein that is not a member of the recognized repertoire due to its possession of a degenerate prolyl-isomerase domain. The cyclophilin repertoire of Sz. pombe therefore represents a better model group for the study of cyclophilin function in the higher eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号