首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Copper nanoparticles were prepared by the chemical reduction method. These copper particles were embedded into the polyvinylchloride (PVC) matrix as support and used as an electrode (PVC/Cu) for the oxidation of methanol fuel for improving the current response. The PVC/Cu electrodes were characterized by thermal gravimetric analysis (TGA) for thermal stability of the electrode, X-ray diffraction (XRD) for identification of copper nanoparticles in the electrode, Fourier transform infrared spectroscopy (FTIR) to identify the interaction between PVC and Cu and scan electron microscopy (SEM) with EDAX for the morphology of the electrode. The electrocatalytic activity of the electrode was characterized by the cyclic voltammetry, linear sweep voltammetry, and chronoamperometry techniques. An increase in the electrode activity was observed with the increase of copper quantity from 0.18 g (PVC/Cu-0.18 g) to 0.24 g (PVC/Cu-0.24 g) and the maximum was found at 0.24 g of copper in the electrode. Also, it was observed that the electrode achieved the maximum catalytic current in 0.5 mol/L CH3OH + 1 mol/L NaOH solution. FTIR identified that water molecules, C—H group, copper nanoparticle and its oxide were available in the electrode. SEM images with EDAX showed that copper particles were properly embedded in the polyvinylchloride matrix.  相似文献   

2.
The performances of direct methanol fuel cells (DMFC) are affected by the methanol cross-over, due to the concentration gradient and electrosmosis between the anodes and cathodes. In this study, Polytetrafluoroethylene (PTFE) has been sputter deposited on conventional proton conducting membranes, Nafion117. It was found that the problem of the methanol cross-over was eased by the PTFE coating. The properties of coated and uncoated Nafion117 were investigated by scanning electron microscopy, electron spectroscopy for chemical analysis, gas chromatography and AC impedance spectroscopy. The coated film can form a barrier layer between the methanol solution and the polymer membrane. The PTFE barrier layer can effectively retard the methanol molecules, whereas the proton conductivities were not significantly influenced. The conductivity/permeability ratio two times higher the conventional Nafion117 membrane has been achieved under an optimized coating time. This technique developed shows great potential for the applications in DMFCs.  相似文献   

3.
Pt/onion-like fullerenes as catalyst for direct methanol fuel cell   总被引:2,自引:0,他引:2  
Onion-like fullerenes synthesized by arc discharge in water were used as support of Pt nanoparticles as electrocatalytic materials for direct methanol fuel cell. Uniform platinum nanoparticles with the average diameter of about 4.3 nm were well dispersed on the surface of onion-like fullerenes by impregnation-reduction method. The morphologies and microstructures of the as-prepared composites were studied by means of XRD and TEM. Electrochemical analysis shows that this kind of nano material may be an excellent candidate to be used as the support of catalyst for methanol electrochemical oxidation.  相似文献   

4.
采用不同还原剂和碳载体,通过柠檬酸盐稳定法制备直接甲醇燃料电池用担载量为60%的Pt/C催化剂,通过X射线衍射(XRD),透射电子显微镜(TEM)和循环伏安(CV)等手段对催化剂进行表征。结果表明:柠檬酸盐加入和还原剂优化可以很好地控制铂纳米颗粒的粒径,而碳载体的选择对催化剂的电催化活性有很大影响。在采用柠檬酸钠做稳定剂、甲醛做还原剂、BP2000碳粉做载体的条件下,制备的60%Pt/BP2000催化剂性能最佳,平均粒径约2nm,电化学活性面积为66.46m2/g。使用该材料作为阴极催化剂的直接甲醇燃料电池单电池最大功率密度可达到78.8mW/cm2。  相似文献   

5.
张巧  王剑平  赵君  虞坤  易文彬  赵通明 《贵金属》2022,43(S1):139-146
阳极催化反应的反应动力学缓慢是限制直接甲醇燃料电池(DMFC)技术发展的主要原因之一,其中催化剂载体对阳极催化反应有重大影响,载体材料的选择对于决定催化剂乃至燃料电池的性能、效率、稳定性和成本都至关重要。基于对30多篇文献的分析,本文分类综述了用于DMFC碳基催化剂载体包括炭黑、介孔碳、碳纳米管(CNTs)、石墨烯和碳纤维纸,非碳基催化剂载体包括金属有机框架(MOF)、新型二维材料MXenes、钛基材料等材料的研究进展。  相似文献   

6.
Three co-impregnation/chemical reduction methods in acidic solutions of pH 1,including ethylene glycol (EG),NaBH4,and HCOOH,were compared for Pt-WO3/C catalysts.Pt-WO3/C catalysts containing 10 wt.% and 20 wt.% platinum per carbon were prepared by the three methods;their morphology and electrocatalytic activities were characterized.The 20 wt.% Pt-WO3/C catalyst prepared by the co-impregnation/EG method presented the optimal dispersion with an average particle size of 4.6 nm and subsequently the best electrocatalytic activity,and so,it was further characterized.Its anodic peak current density for ethanol oxidation from linear sweep voltammetry (LSV) is 7.9 mA·cm?2,which is 1.4 and 5.2 times as high as those of the catalysts prepared by co-impregnation/NaBH4 and co-impregnation/ HCOOH reduction methods,2.1 times as high as that of the 10 wt.% Pt-WO3/C catalyst prepared by co-impregnation/EG method,respectively.  相似文献   

7.
栗云彦  唐玲  刘健  陈慧  赵云昆  刘锋 《贵金属》2023,44(2):95-102
直接甲醇燃料电池(DMFC)以其高效、低污染的特点而备受关注。铂基电催化剂被认为是DMFC阳极的有效催化剂。但由于在甲醇氧化过程中铂的活性中心容易被产生的中间产物如CO等吸附和堵塞,导致催化活性降低,稳定性差,严重制约了直接甲醇燃料电池推广应用。稀土元素由于其4f轨道独特的电子结构和相应的镧系收缩效应,在铂基电催化剂中可有效提高铂催化剂的活性和耐久性。本文简要总结近年来稀土氧化物作为铂基电催化剂的助催化剂、碳材料掺杂改性剂和载体在甲醇氧化反应中的催化活性和抗CO中毒能力应用研究,以及铂-稀土金属(Pt-RE)纳米合金催化剂对DMFC长期运行稳定性的影响;并对稀土元素在铂基电催化剂中的应用发展提出了展望。  相似文献   

8.
以一种高速列车转向架用材料SMA490BW耐候钢为研究对象,针对传统MAG易出现未焊透等焊接问题,对8 mm SMA490BW耐候钢的激光-MAG复合焊进行研究。通过对比8 mm SMA490BW耐候钢MAG焊与激光-MAG复合焊接头的焊缝成形、组织特点、力学性能,可以得到:SMA490BW耐候钢的激光-MAG焊接头的焊缝成形质量优于MAG焊接头,焊缝组织也更加均匀细小,焊缝区硬度较MAG焊接头高;复合焊接头的抗拉强度、弯曲性能与MAG焊接头类似;复合焊接头的韧性比MAG焊接头更好。  相似文献   

9.
Au@Pt core-shell nanoparticles were successfully synthesized by a successive reduction method and then assembled on Vulcan XC-72 carbon surface.Furthermore,its composition,morphology,structure,and activity towards methanol oxidation were characterized by UV-vis spectrometry,transmission electron microscopy (TEM),high-resolution TEM (HRTEM),X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),and cyclic voltammetry (CV).Results reveal that Au@Pt/C catalyst has better activity towards methanol oxidation than the pure platinum prepared under the same conditions.When the atomic ratio of Au to Pt in the prepared Au@Pt/C catalyst is 1∶2,this catalyst exhibits best electrocatalytic activity towards methanol oxidation in acidic media,and the peak current density on this catalyst is ~2.0times higher than that on Pt/C catalyst.The better catalytic activity of Au@Pt/C results from its better resistance to toxic CO than Pt/C because the CO oxidation on Au@Pt/C is 60 mV more negative than the case on Pt/C.  相似文献   

10.
11.
This research is aimed to increase the activity of platinum–ruthenium alloy catalysts, thus to lower the catalyst loading in anodes for methanol electrooxidation. The DMFC catalyst consisting of Pt–Ru/C were prepared from (NH4)2PtCl6 and Ru(OH)3 as solid precursors at different temperatures and times of duration during their reduction. Their performances were examined by cyclic voltammograms and chronoamperometric curves. The particle size and its distribution in the catalysts were determined by means of TEM and XRD. It is found that the XRD patterns of the catalyst prepared from (NH4)2PtCl6 and Ru(OH)3 as precursors show Pt reflexions with f.c.c. crystal structure. There are diffraction peaks indicating the presence of either pure Ru or a Ru-rich h.c.p. phase, which has not been alloyed with Pt in Pt–Ru/C. The activity of the Pt–Ru/C catalysts prepared from (NH4)2PtCl6 and Ru(OH)3 as precursors is higher than those obtained from H2PtCl6 and RuCl3 by chemical or thermal reduction. The activity of Pt–Ru/C catalysts prepared at 360 °C is higher than those prepared at 320 and 400 °C. After 1 h of reduction at 360 °C its particle size is small, about 7.5 nm, and its catalytic activity is higher than those obtained after 2 and 3 h of reduction.  相似文献   

12.
Fabrication, characterization and performance of a porous metal-fiber sintered felt (PMFSF) based on multi-tooth cutting and solid-phase sintering were studied. The PMFSF was used as the anodic methanol barrier in a passive air-breathing direct methanol fuel cell to mitigate the effects of methanol crossover. Compared with the commercial SUS316L felt made of bundle-drawn fibers, this self-made PMFSF has larger pore diameter, polarized pore distribution, irregular fiber shape, rougher surface, lower mass flow resistance and evident hydrophobicity. The results reveal that the use of a PMFSF significantly enhances the cell performance since it helps to maintain a balance between the reactant and product management while depressing methanol crossover. The PMFSF with a porosity of 70% yields the highest cell performance at a methanol concentration of 4 mol/L.  相似文献   

13.
Three co-impregnation/chemical reduction methods in acidic solutions of pH < 1, including ethylene glycol (EG), NaBH4, and HCOOH, were compared for Pt-WO3/C catalysts. Pt-WO3/C catalysts containing 10 wt.% and 20 wt.% platinum per carbon were prepared by the three methods; their morphology and electrocatalytic activities were characterized. The 20 wt.% Pt-WO3/C catalyst prepared by the co-impregnation/EG method presented the optimal dispersion with an average particle size of 4.6 nm and subsequently the best electrocatalytic activity, and so, it was further characterized. Its anodic peak current density for ethanol oxidation from linear sweep voltammetry (LSV) is 7.9 mA·cm-2 , which is 1.4 and 5.2 times as high as those of the catalysts prepared by co-impregnation/NaBH4 and co-impregnation/HCOOH reduction methods, 2.1 times as high as that of the 10 wt.% Pt-WO3/C catalyst prepared by co-impregnation/EG method, respectively.  相似文献   

14.
This article focuses on the development of the anode layer for solid oxide fuel cells by plasma spraying. The composite (cermet) anode, developed by thermal spraying, consisted of nickel and yttria-stabilized zirconia (YSZ). The effect of different plasma-spraying technologies on the microstructure characteristics and the electrochemical behavior of the anode layer were investigated. Coatings were fabricated by spraying nickel-coated graphite or nickel oxide with YSZ using a Triplex II plasma torch under atmospheric conditions as well as a standard F4 torch under atmospheric or soft-vacuum conditions. The investigations were directed to have an open microporous structure, higher electrical conductivity, and catalytic activity of anode deposits. Porosity was investigated by measuring the gas permeability. Scanning electron microscopy and x-ray diffraction technologies were applied to examine the morphology, microstructure, and composition of the layers. Electrical conductivity measurements were carried out to determine the ohmic losses within the anode layer. The most promising layers were analyzed by measuring the electrochemical behavior to obtain information about catalytic activity and performance. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

15.
质子交换膜燃料电池用炭纤维纸的制备和表征   总被引:1,自引:1,他引:0  
采用干法成型技术制备聚丙烯腈(PAN)基炭纤维纸坯体,将其经树脂浸渍、热压、炭化、石墨化处理后制备成轻量化炭纤维纸。利用扫描电子显微镜(SEM)观察炭纤维纸及坯体的显微结构,利用X射线衍射仪测试不同温度处理后的石墨化度,并利用四探针法测试炭纤维纸的导电性能,透气性采用压差法进行测试。结果表明:石墨化温度是影响炭纤维纸电阻率的关键因素,而密度对电阻率的影响较小;透气性随厚度和体积密度的增加而降低;制备的炭纤维纸厚度为0.11mm、密度为0.65g/cm3,将其经2000℃石墨化处理后,采用Pt载量0.5mg/cm2的Core112CCM为膜电极,在H2与空气的流量比为1.2-5、温度60℃、常压条件下进行单体电池性能测试,电流密度为500mA/cm2时输出电压为0.6V,电池输出性能较好。  相似文献   

16.
Thin film of Ti-Ni alloy has a potential to perform the microactuation functions required in the microelectromechanical system (MEMS).It is essential, however, to have good uniformity in both chemical composition and thickness to realize its full potential as an active component of MEMS devices.Electron beam evaporation technique was employed in this study to fabricate the thin films of Ti-Ni alloy on different substrates.The targets used for the evaporation were first prepared by electron beam melting.The uniformity of composition and microstructure of the thin films were characterized by electron probe microanalysis (EPMA), Auger electron spectroscopy (AES), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM).The mechanical property of the thin films was evaluated by the nano-indentation test.The martensitic transformation temperature was measured by differential scanning calorimetry (DSC).It is confirmed that the chemical composition of deposited thin films is identical to that of the target materials.Furthermore, results from depth profiling of the chemical composition variation reveal that the electron beam evaporation process yields better compositional homogeneity than other conventional methods such as sputtering and thermal evaporation.Microstructural observation by TEM shows that nanometer size precipitates are preferentially distributed along the grain boundaries of a few micron size grains.The hardness and elastic modulus of thin films decreases with an increase in Ti contents.  相似文献   

17.
1 INTRODUCTIONInorganicmembraneforgasseparation ,liquidper meationisoneoftheadvancedtechnologies ,whichwouldbemostpossibletobeusedintheindustriesofchemicalengineering ,electron ,spinning ,metallurgy ,petroleum ,andmedicineetc .Ceramicmembraneswithanaveragepor…  相似文献   

18.
TiO2 nanoparticles doped with different concentrations of Rb were prepared by sol-gel method.The crystal structures of samples were characterized by X-ray diffraction(XRD) and transmission electron microscopy(TEM).It was confirmed by the Rietveld refinement method that the as-prepared samples crystallize in anatase phase and Rb doping induces expansion and distortion of the crystal lattice.Compared with the pure TiO2_,the Rbdoped nanoparticles have smaller crystal size and better disp...  相似文献   

19.
Fe掺杂对质子交换膜燃料电池Pt/C催化剂性能的影响   总被引:2,自引:0,他引:2  
用铁作掺杂元素,通过液相均相沉淀-气/固高温还原两段反应方法制备了碳载Pt-Fe合金催化剂,比较了3种不同Fe含量催化剂的电催化性能.采用X射线衍射和X光电子能谱技术研究了Fe掺杂对Pt/C催化剂晶体结构及表面元素存在形态的影响.结果显示:Pt-Fe/C催化剂比单一Pt/C催化剂有更小的晶格参数,其中Fe元素可能的存在形态应为与铂结合的合金态,但不排除表面存在部分氧化态.单电池放电稳定性实验表明:在200 mA·cm-2电流密度下放电时电池电压基本稳定,其中Pt与Fe摩尔比为1∶1时电极催化效果相应较好,但大电流密度放电时电池电压下降比单一Pt/C催化剂电极的快,这说明Fe的加入能提高催化剂的电催化性能,但阴极表面氧原子浓度较大时,Fe可能发生氧化而使得电极稳定性受到影响.  相似文献   

20.
To prepare black electrophoretic particles with good suspension stability in the low dielectric medium for electrophoretic display application, four kinds of carbon black (CB)/acrylic copolymer hybrid particles, CB/poly(2-hydroxyethyl acrylate-co-lauryl methacrylate) (P(HEA–LMA)), CB/poly(2-hydroxyethyl acrylate-co-2-ethylhexyl acrylate) (P(HEA–EHA)), CB/poly(2-(dimethylamino)ethyl methacrylate-co-2-ethylhexyl acrylate) (P(DMA–EHA)) and CB/poly(2-(dimethylamino)ethyl methacrylate-co-lauryl methacrylate) (P(DMA–LMA)), were prepared via polar bonding, the interaction between the carboxyl groups on the surface of CB and the hydroxyl or amino group in copolymers. Structure, morphology as well as electrophoretic properties of the particles were examined. The particle size of the P(HEA–EHA) and P(DMA–EHA) treated CB increases with increasing the storage time. While the particle size of the P(HEA–LMA) and P(DMA–LMA) treated CB is time independent, which can be attributed to the better extension of P(LMA) segments in tetrachloroethylene than P(EHA) and the resulting more effective steric effect. When the feed ratio of DMA/LMA was 3:5 by volume, the maximum values of the electrophoretic mobility and Zeta potential reach 5.44 × 10?10 m2 V?1 s?1 and 32.5 mV, respectively. The P(DMA–LMA) anchored CB particles can be applied in the dual-particle electrophoretic dispersion together with negative charged TiO2 to show black and white images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号