首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the characterization of a de novo unbalanced chromosome rearrangement by comparative genomic hybridization (CGH) in a 15-day-old child with hypotonia and dysmorphia. We describe the combined use of CGH and fluorescence in situ hybridization (FISH) to identify the origin of the additional chromosomal material on the short arm of chromosome 6. Investigation with FISH revealed that the excess material was not derived from chromosome 6. Identification of unknown unbalanced aberrations that could not be identified by traditional cytogenetics procedures is possible by CGH analysis. Visual analysis of digital images from CGH-metaphase spreads revealed a predominantly green signal on the telomeric region of chromosome 10p. After quantitative digital ratio imaging of 10 CGH-metaphase spreads, a region of gain was found in the chromosome band 10p14-pter. The CGH finding was confirmed by FISH analysis, using a whole chromosome 10 paint probe. These results show the usefulness of CGH for a rapid characterization of de novo unbalanced translocation, unidentifiable by karyotype alone.  相似文献   

2.
In this study, we investigated whether fluorescein isothiocyanate (FITC)-labeling of test DNA and Texas-red (TR) labeling of reference DNA in comparative genomic hybridization (CGH) experiments cause the results to differ from those obtained using the opposite combination (reverse labeling). Analysis was performed on a total of 20 DNA specimens consisting of 13 frozen bone marrow aspirates from patients with acute myeloid leukemia, and fresh peripheral blood samples from seven healthy donors. For CGH, one aliquot from each test DNA sample was labeled using nick-translation with FITC-dUTP and another with TR-dUTP. Afterwards, the FITC-dUTP and TR-dUTP-labeled test DNAs were hybridized to TR-dUTP- and FITC-dUTP-labeled normal reference DNAs, respectively. The results using the two combinations were compared with each other and with the results of G-banding karyotype analysis. Karyotype data was used to detect artifacts known to occur in some chromosome regions in CGH analysis. The control DNAs labeled with FITC or TR showed no DNA copy number changes. Regardless of the fluorochrome employed for labeling, no DNA copy number changes were detected using CGH in patients with normal karyotypes, nor in patients whose karyotype aberrations were present in less than 40% of cells. In the remaining patients, CGH revealed DNA copy number changes that coincided with the results of the G-banding analysis. Hybridization artifacts known to occur in CGH experiments affecting chromosome regions 1p33-pter, 16p, 17p, 19, and 22 were observed in 15-23% of the tumor samples labeled with FITC, but not in samples labeled with TR. In addition, other previously unreported overrepresentations affecting 7q21, 9q34, 16q, 17q, and chromosome 20 were observed at very low frequencies in up to 10% of the samples when FITC was used to label test DNA. However, when TR was used, overrepresentations were observed at 4q13-q21, 11q21-q23, 13q21-qter, and Xq21-q22, whereas 19p was underrepresented. The results demonstrate that TR-labeling confirms abnormalities detected using FITC-labeling and reduces hybridization artifacts in the known problematic regions of the human genome.  相似文献   

3.
Breast carcinoma is frequently associated with nonrandom chromosomal aberrations, but their identification by standard cytogenetics (SC) is often limited by technical difficulties. Fluorescence in situ hybridization (FISH) studies of interphase nuclei can circumvent some of these difficulties and has the potential to identify nonrandom molecular cytogenetic events occurring in breast cancer. FISH was performed on tumor nuclei isolated from 15 formalin-fixed, paraffin-embedded archival breast carcinomas using a panel of chromosome-specific alpha-satellite probes for enumerating chromosomes in interphase nuclei. Freshly isolated cells from these same cases had previously been studied by standard cytogenetics and FISH. In addition to archival primary carcinoma, archival metastases and normal tissue were also studied by FISH. Genetic numerical alterations were identified by standard cytogenetics or FISH in 14 of 15 carcinomas. Numeric alterations initially identified by standard cytogenetics were confirmed by FISH in 9 of 10 cases. Results of FISH performed on nuclei isolated from paraffin-embedded material were in agreement with FISH performed on freshly isolated cells. Clonal numeric alterations were observed in the archival primary tumor as well as in metastases. Archival normal tissue was consistently disomic.  相似文献   

4.
Characteristic chromosome aberrations have been identified in various tumors. Fluorescence in situ hybridization (FISH) using specific probes that are generated by vector cloning or in vitro amplification and labeled with fluorescent dyes allow for the detection of these genetic changes in interphase cells. This technique, that is also referred to as "interphase cytogenetics", can be performed in cytological preparations as well as in sections of routinely formaldehyde-fixed and paraffin-embedded tissue. In cancer research and diagnostics, interphase cytogenetics by FISH is used to detect numerical chromosome changes and structural aberrations, e.g., translocations, deletions, or amplifications. In this technical overview, we explain the principles of the FISH method and provide protocols for FISH in cytological preparations and paraffin sections. Moreover, possible applications of FISH are discussed.  相似文献   

5.
Bone marrow and blood from patients with acute myeloid leukemia and myelodysplastic syndrome were studied by simultaneous analysis of cell morphology and karyotype. A combined technique of May-Grünwald Giemsa (MGG) for cell morphology and fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes for detection of cytogenetic aberrations allowed us to investigate cell-lineage-specific chromosomal abnormalities. We introduced video recordings to examine large numbers of cells. Briefly, evaluation was first performed on MGG slides, during which cell position and morphology were recorded on an S-VHS recorder. Subsequently, the same slides were used for FISH. This resulted in the identification of MGG-stained cells on the video screen and, at the same time, the interpretation of FISH signals in the fluorescence microscope. Specimens of bone marrow or blood samples from four patients with different hematologic malignancies were studied. One of these patients was studied before and after cytotoxic treatment. The gain or loss of chromosomes could be detected easily and morphologically assigned to the blasts in all patients and to a variable proportion of the myelomonocytic lineage in two patients, but not to the lymphocytes. Thus, this method provides new possibilities for investigating the clonality of hematologic malignancies.  相似文献   

6.
Fluorescence in situ hybridization (FISH) is a powerful tool for detection of numerical and structural chromosomal aberrations. We have compared conventional banding techniques and FISH for the detection of monosomy 7 (-7) and trisomy 8 (+8) in 89 patients with myeloid malignancies. Of these patients, 21 had -7, 30 had +8, four had both, and 34 had no aberrations or aberrations other than -7 or +8 as assessed by banding techniques. Sequential samples were available in 23 patients. Alphoid DNA probes specific for chromosomes no. 7 and 8 were used for FISH. As controls, 10 normal bone marrow (BM) samples were hybridized with the chromosomes no. 7 and 8 probes, and in addition all tumor samples were hybridized with a chromosome no. 1 specific probe. The cut-off value for -7 was 18% one-spot cells, and for +8 was 3% three-spot cells. FISH analysis of 44 samples with -7 or +8, and at least 10 metaphases evaluated, showed that the proportions of aberrant metaphase cells mirrored the interphase clone sizes. Most samples with nonclonal metaphase aberrations, including those with only a few metaphases, had increased numbers of aberrant interphase cells: 20% to 80% for -7, and 3% to 43% for +8. Interphase cytogenetics of the 34 samples without -7 or +8 did not show significant cell populations with -7 or +8. In four patients, -7 or +8 could not be confirmed by FISH due to additional structural aberrations, marker chromosomes, or wrongly interpreted banding results. As FISH will be used more and more in cytogenetic diagnosis, clinical follow-up, and therapy monitoring, it will be necessary to standardize FISH procedures and supplement the Standing Committee on Human Cytogenetic Nomenclature (ISCN) definitions of a clone with criteria specifically for in situ hybridization.  相似文献   

7.
Random chromosome abnormality is an important issue in clinical cytogenetics, especially in cancer cytogenetics. The significance of random abnormalities needs to be well defined. In the present study, ten patients with malignant hematologic disorders were analyzed by classical cytogenetic techniques and fluorescence in situ hybridization (FISH) procedures. Cytogenetic studies showed all ten patients to have a single cell with trisomy, i.e., +8, +8 (5 cases), +12, +15, +18, +20, and +21, respectively. FISH necessitated revision of the cytogenetic diagnosis and confirmed the clonality of these "random" abnormalities.  相似文献   

8.
Conventional chromosome analysis (CCA) and interphase fluorescence in situ hybridization (FISH) was performed in 42 patients with mantle-cell lymphoma (MCL), with BCL1 rearrangement. The t(11;14)(q13;q32) or 11q abnormalities were detected by CCA in 34 cases, 20 of which had additional aberrations. A normal karyotype was observed in 8 cases. Probes detecting the chromosome aberrations that were observed in at least 3 cases by CCA, ie, +12, 13q14 deletion, and 17p deletion, were used for interphase FISH analysis. FISH detected total or partial +12, 13q14 deletion and 17p- in 28.5%, 52.4%, and 26% of the cases, respectively. The presence of these anomalies was not a function of karyotype complexity. Based on the results of CCA/FISH, three groups of increasing karyotype complexity were recognized: group 1, including 11 patients without detectable aberrations in addition to BCL1 rearrangement; group 2, including 14 patients with 1 to 2 additional anomalies; and group 3, including 17 patients with three or more additional anomalies. Clinical parameters associated with shorter survival were male sex (P =.006) and primary lymph-node involvement compared with primary bone marrow involvement (P =.015). Trisomy 12 was the only single cytogenetic parameter predictive of a poor prognosis (P =.006) and the best prognostic indicator was the derived measure of karyotype complexity (P <.0001), which maintained statistical significance in multivariate analysis (P<.0001). We arrived at the following conclusions: 13q14 deletion occurs at a high incidence in MCL; 17p deletion and total/partial +12 are relatively frequent events in MCL, the latter aberration being associated with a shorter survival; and the degree of karyotype complexity has a strong impact on prognosis in this neoplasia.  相似文献   

9.
In contrast to low-grade B-cell lymphomas originating in the gastrointestinal (GI) tract, only few cytogenetic data are available for the large cell, highly malignant variants. We studied 31 large B-cell lymphomas of the GI tract by comparative genomic hybridization (CGH) and fluorescence in situ hybridization using specific DNA probes (FISH). The most frequent aberrations were gains of all or of parts of chromosomes 11 (11 cases), 12 (9 cases), 1q (4 cases), and 3q (4 cases). Losses of parts of chromosome 6q and of parts of the short arm of chromosome 17 (6 cases each) were found most frequently. In four cases a total of seven high-level DNA amplifications was detected. In two of these cases, involvement of specific protooncogenes (REL and MYC) was shown. Some genetic aberrations seemed to be associated with an inferior clinical course: patients with >/=2 aberrations had a significantly shorter median survival. Furthermore, all patients with gains of all or parts of chromosome arm 1q and with high-level DNA amplifications as well as seven of nine patients with gains of all or parts of chromosome 12 died of lymphoma. In conclusion, the pattern of chromosomal gains and losses in large B-cell lymphomas was different from data reported for low-grade (MALT) lymphomas of the stomach and bowel, especially with respect to the high incidence of partial gains of chromosome arm 11q and of all or parts of chromosome 12 and the low frequency of polysomy 3. In addition, our data suggest that chromosomal gains and losses detected by CGH and FISH may predict for the outcome of patients with this tumor entity.  相似文献   

10.
We describe a fluorescence in situ hybridization (FISH) procedure for assessing zygotic risk of paternal exposure to endogenous or exogenous agents. The procedure employs multicolour FISH with chromosome-specific DNA painting probes plus DAPI staining for detecting both balanced and unbalanced chromosomal aberrations in mouse first-cleavage (1-Cl) zygote metaphases. Four composite probes specific for chromosomes 1, 2, 3 or X, each labelled with biotin, plus a composite probe specific for chromosome Y labelled with digoxigenin, were used. We applied this method to evaluate the effects of paternal exposure to acrylamide, a model germ cell clastogen. First-cleavage zygote metaphases, collected from untreated females mated to males whose sperm or late spermatids were treated with acrylamide, were scored for the induction of structural aberrations using both chromosome painting (PAINT analysis) and DAPI analysis. Structural chromosomal aberrations were observed in the sperm-derived, but not in the egg-derived, pronuclei. While 59.4% of the zygotes had structural aberrations by DAPI analysis, 94.1% of the same zygotes had structural aberrations by PAINT analysis (P < 0.001), illustrating the increased sensitivity for detecting translocations and insertions obtained by adding chromosome painting. These findings show that FISH painting of mouse 1-Cl zygotes when used in conjunction with DAPI analysis is a powerful model for investigating the cytogenetic defects transmitted from father to offspring.  相似文献   

11.
BACKGROUND AND OBJECTIVES: Sensitive and quantitative cytogenetic methods to better assess the biological significance of post-BMT chimerism have been recently developed. In this study, we compared the results of chimerism analysis and evolution employing conventional cytogenetics and fluorescence in situ hybridization (FISH) in 16 patients after sex-mismatched BMT, and in 5 patients after donor lymphocyte infusion (DLI) to treat post-BMT relapse. DESIGN AND METHODS: FISH studies were performed using separate digoxigenin labeled centromeric DNA probes for the X (pDMX1) and Y (DYZ1/DYZ3) chromosomes. To this purpose, different types of samples were used: bone marrow (BM) and peripheral blood (PB) slides processed for conventional cytogenetics, and routine BM and PB smears. RESULTS: Results of chimerism studies performed on different types of samples showed no significant differences. No significant differences in the ability to identify the sex of each cell with both pDMX1 and DYZ1/DYZ3 probes were found and the results obtained from independent experiments showed a high linear correlation. Chimerism analysis by FISH showed initial mixed chimerism after BMT in 10 patients. Seven of these patients were also studied by conventional cytogenetics and 2 of these showed mixed chimerism. Seven of the former 10 patients evolved to complete donor chimera. 6 patients showed cytogenetic or hematologic bone marrow relapse, 3 of which were preceded by mixed chimaerism as revealed by FISH studies. FISH studies permitted an easy and accurate monitorization of the response to DLI in 5 relapsed patients, showing an increase in the proportion of donor cells in 4 patients as they reached a new complete remission. INTERPRETATION AND CONCLUSIONS: Both FISH and conventional cytogenetics are quantitative methods to assess chimerism. However, FISH is more sensitive, accurate and can even be applied on routine BM and PB smears. Furthermore, its combination with immunophenotyping approaches to quantify chimerism on cell subpopulations, will help to clarify post-BMT chimerism significance.  相似文献   

12.
Criteria for detection of chromosome aberrations by Comparative Genomic Hybridization (CGH) are not standardized and improvement of this part of the analysis is of paramount importance to the applicability of the technique. The aim of this work was to suggest CGH detection criteria that increase the specificity and sensitivity and at the same time include chromosome regions previously excluded from CGH analysis. We analyzed 33 hybridizations with normal DNA and modified our CGH software in order to use a selection of these normal analyses as a model for interpretation of analyses of unknown samples. This approach was successfully tested on 14 samples with known aberrations.  相似文献   

13.
We report an unusual case of a balanced reciprocal translocation with a recombinant chromosome which has arisen from a familial balanced complex translocation. Fluorescence in situ hybridization studies were essential for the identification of the breakpoints. A review of 60 cases of balanced complex translocations (BCT) has revealed three cases similar to ours. Carriers of BCT have a high risk of having spontaneous abortions or a child with an unbalanced karyotype. Certain types of balanced rearrangements involving an insertion can give rise to a simpler balanced translocation as a result of crossover. Our observations support the assumption that the chance that a de novo balanced complex translocation is associated with an abnormal phenotype increases with the number of breakpoints.  相似文献   

14.
The accuracy of cytogenetic analyses of human solid cancers has improved enormously over the past decade by the introduction and refinement of DNA in situ hybridization (ISH) techniques. This methodology can be applied to cells in the interphase state, thereby making it an excellent tool for the delineation of chromosomal aberrations in solid tumors. The use of non-isotopic ISH to intact and disaggregated cancer specimens will be discussed, as well as comparative genomic hybridization (CGH) with tumor-derived DNAs. In this review we will focus on hybridocytochemical interphase approaches for the detection of chromosomal changes in frequently occurring human epithelial malignancies, e.g., breast, lung, and prostate carcinomas. We will further discuss the use of ISH procedures for the genetic analysis of precursor conditions leading to invasive carcinomas. Knowledge concerning these precancerous conditions is increasing, and its importance in cancer prevention has been recognized. Interphase cytogenetics by ISH, as well as CGH, with DNAs derived from microdissected, precancerous, dysplastic tissue areas will increase our understanding of these lesions, both at the investigative and diagnostic levels.  相似文献   

15.
BACKGROUND AND OBJECTIVE: Myelodysplastic syndrome progenitor cells can be grown and expanded in long term bone marrow liquid cultures in the presence of multiple cytokines. In this study we investigated the pattern of differentiation and response to growth factors in six cases of myelodysplastic syndrome (MDS) with well-defined cytogenetic abnormalities by means of conventional cytogenetics and fluorescence in situ hybridization (FISH). METHODS: Bone marrow cells were grown in stroma-free liquid cultures in the presence of SCF, IL-3, IL-6 and GM-CSF. RESULTS: IN three cases a CFU-GM expansion comparable to normal controls was observed, together with a decrease or increase of cells with abnormal karyotype. Two cases showed no response to growth factor stimulation, morphological signs of terminal myeloid differentiation and increase (one case) or decrease (one case) in the percentage of abnormal FISH signals along the cultures. In one additional case, while CFU-C expansion was present, clearcut leukemic transformation was observed in the culture, together with a sharp decrease in the percentage of abnormal FISH signals, indicating a leukemic transformation of MDS progenitor cells with a normal karyotype. INTERPRETATION AND CONCLUSIONS: Our data indicate that FISH analysis is generally a poor indicator of clonality in MDS; nevertheless, determining the kinetics of cytogenetically abnormal clones in liquid bone marrow cultures may provide insight as to the growth abnormalities of MDS progenitor cells and may be useful prior to in vivo growth factor administration.  相似文献   

16.
DNA copy number changes were studied by comparative genomic hybridization (CGH) on bone marrow samples obtained from 72 patients with childhood acute lymphoblastic leukemia (ALL) at diagnosis. The patients had been admitted to the Helsinki University Central Hospital (Finland) between 1982 and 1997. CGH showed DNA copy number changes in 45 patients (62.5%) with a mean of 4.6 aberrations per patient (range, 1 to 22). The results of CGH and chromosome banding analysis were generally concordant, but CGH facilitated specific karyotyping in 34 cases. DNA copy number gains were more frequent than losses (gains:losses, 6:1). Gains of DNA sequences affected almost exclusively whole chromosomes and were most commonly observed in chromosomes 21 (25%), 18 (22.2%), X (19.4%), 10 (19.4%) and 17 (19.4%). The most common partial gain was 1q31-q32 (8.3%). The most common gains of chromosomes 21, 18, X, 10, 17, 14, 4, 6 and 8 appeared concurrently. High-level amplifications of small chromosome regions were sporadic, detected only in two patients (2.8%). Chromosome 21 was involved in both cases. The most common losses were 9p22-pter (12.5%) and 12p13-pter (11.1%). No statistically significant association between the CGH findings and the diagnostic white blood cell count was observed.  相似文献   

17.
OBJECTIVE: To investigate the possible involvement of chromosome abnormalities in pathogenesis of human esophageal cancer. METHODS: Four cell lines of human esophageal cancer (EC) established in our laboratory were analysed using interphase fluorescence in situ hybridization (FISH), chromosome painting technique and comparative genomic hybridization (CGH). RESULTS: Chromosome gain of 1,2,3,8,16, 17, and 20 was found in the four cell lines, and loss of chromosome Y in cell line EC8712, EC8733 and EC8501 was noted. Other frequent changes were partial deletion of 1p, translocation of 2q and amplification of 5p in all 4 cell lines, and amplification of 8q and 13q in EC8733 and deletion of 17p in EC8712. CONCLUSION: The data suggest that nonrandom chromosome aberrations may play an important role in the pathogenesis of human esophageal cancer.  相似文献   

18.
We revisited the cytogenetic alterations of the cervical adenocarcinoma cell line HeLa through the use of spectral karyotyping (SKY), comparative genomic hybridization (CGH), and fluorescence in situ hybridization (FISH). SKY analysis unequivocally characterized all abnormal chromosomes. Chromosomal breakpoints were primarily assigned by simultaneous assessment of SKY painted chromosomes and inverted 4,6-diamidino2-phenylindole banding from the same cell. Twenty clonally abnormal chromosomes were found. Comparison with previously reported HeLa G-banding karyotypes revealed a remarkably stable cytogenetic constitution because 18 of 20 markers that were found were present before. The classification of 12 markers was refined in this study. Our assignment of the remaining six markers was consistent with those described in the literature. The CGH map of chromosomal copy number gains and losses strikingly matched the SKY results and was, in a few instances, decisive for assigning breakpoints. The combined use of molecular cytogenetic methods SKY, CGH, and FISH with site-specific probes, in addition to inverted 4,6-diamidino-2-phenylindole or conventional G-banding analysis, provides the means to fully assess the genomic abnormalities in cancer cells. Human papillomaviruses (HPVs) are frequently integrated into the cellular DNA in cervical cancers. We mapped by FISH five HPV18 integration sites: three on normal chromosomes 8 at 8q24 and two on derivative chromosomes, der(5)t(5;22;8)(qll;q11q13;q24) and der(22)t(8; 22)(q24;q13), which have chromosome 8q24 material. An 8q24 copy number increase was detected by CGH. Dual-color FISH with a c-MYC probe mapping to 8q24 revealed colocalization with HPV18 at all integration sites, indicating that dispersion and amplification of the c-MYC gene sequences occurred after and was most likely triggered by the viral insertion at a single integration site. Numerical and structural chromosomal aberrations identified by SKY, genomic imbalances detected by CGH, as well as FISH localization of HPV18 integration at the c-MYC locus in HeLa cells are common and representative for advanced stage cervical cell carcinomas. The HeLa genome has been remarkably stable after years of continuous cultivation; therefore, the genetic alterations detected may have been present in the primary tumor and reflect events that are relevant to the development of cervical cancer.  相似文献   

19.
The translocation t(12;22)(p13;q11) has been consistently described in myeloid malignancies and shown to result from a fusion between the TEL and MN1 genes. Previously described deletions of 12p in acute lymphoblastic leukemias have been recently shown to harbor undetected translocations involving the TEL gene at 12p13. We document a case of an aggressive chronic B-cell leukemia whose cells had trisomy 12 and two unbalanced translocations involving 12p13, including a t(12;22)(p13;q11) as shown by conventional cytogenetics and fluorescence in situ hybridization (FISH). The 12p13 breakpoint of the t(12;22)(p13;q11) was telomeric to the TEL gene, and the second unbalanced translocation with breakpoint 12p13 resulted in the deletion of TEL. This case demonstrates that TEL gene deletions may be relevant in cases of mature B-lymphoproliferative diseases.  相似文献   

20.
In order to determine the value of fluorescence in situ hybridization (FISH) in the diagnosis and follow-up of bladder cancer interphase cytogenetics was performed on cells from urine and bladder washings. 50 ml of urine or bladder washings were collected. FISH was carried out using centromere probes for chromosomes 7, 8, 9 and 12 according to standard protocols. In each case 100 cell nuclei were analysed. Fifty-four samples from urine and 67 samples from bladder washing were analysed by FISH in comparison with results obtained by conventional cytology. Sensitivity of detection of tumor cells by FISH was 68.5% in urine and 63% in bladder washings regardless of tumor stage and grade. Sensitivity obtained by conventional cytology was 50% in urine and 77.3% in bladder washings. FISH on cells from urine samples is an effective complement to the standard urine cytology. Using centromere probes this approach is characterized by high specificity and sensitivity in tumors with T-category higher than pTa and grade higher than G1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号