首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface fatigue crack propagation is the typical failure mode of engineering structures. In this study, the experiment on surface fatigue crack propagation in 15MnVN steel plate is carried out, and the crack shape and propagation life are obtained. With the concept of ‘equivalent thickness’ brought into the latest three‐dimensional (3D) fracture mechanics theory, one closure model applicable to 3D fatigue crack is put forward. By using the above 3D crack‐closure model, the shape and propagation life of surface fatigue crack in 15MnVN plates are predicted. The simulative results show that the 3D fracture mechanics‐based closure model for 3D fatigue crack is effective.  相似文献   

2.
The relationship between cyclic fracture toughness and the parameter n during selfsimilar fatigue crack growth has been investigated for SS41 and SM41A steels. The conditions under which selfsimilar growth is realized are also analysed.  相似文献   

3.
Fatigue crack growth has been studied under fully reversed torsional loading (R = ?1) using AISI 4340 steel, quenched and tempered at 200°, 400° and 650°C. Only at high stress intensity ranges and short crack lengths are all specimens characterized by a microscopically flat Mode III (anti-plane shear) fracture surface. At lower stress intensities and larger crack lengths, fracture surfaces show a local hill-and-valley morphology with Mode I, 45° branch cracks. Since such surfaces are in sliding contact, friction, abrasion and mutual support of parts of the surface can occur readily during Mode III crack advance. Without significant axial loads superimposed on the torsional loading to minimize this interference, Mode III crack growth rates cannot be uniquely characterized by driving force parameters, such as ΔKIII and ΔCTDIII, computed from applied loads and crack length values. However, for short crack lengths (?0.4 mm), where such crack surface interference is minimal in this steel, it is found that the crack growth rate per cycle in Mode III is only a factor of four smaller than equivalent behaviour in Mode I, for the 650°C temper at ΔKIII = 45 MPa m12.  相似文献   

4.
Gear tooth crack will cause changes in vibration characteristics of gear system, based on which, operating condition of the gear system is always monitored to prevent a presence of serious damage. However, it is also a unsolved puzzle to establish the relationship between tooth crack propagation and vibration features during gear operating process. In this study, an analytical model is proposed to investigate the effect of gear tooth crack on the gear mesh stiffness. Both the tooth crack propagations along tooth width and crack depth are incorporated in this model to simulate gear tooth root crack, especially when it is at very early stage. With this analytical formulation, the mesh stiffness of a spur gear pair with different crack length and depth can be obtained. Afterwards, the effects of gear tooth root crack size on the gear dynamics are simulated and the corresponding changes in statistical indicators – RMS and kurtosis are investigated. The results show that both RMS and kurtosis increase with the growth of tooth crack size for propagation whatever along tooth width and crack length. Frequency spectrum analysis is also carried out to examine the effects of tooth crack. The results show that sidebands caused by the tooth crack are more sensitive than the mesh frequency and its harmonics. The developed analytical model can predict the change of gear mesh stiffness with presence of a gear tooth crack and the corresponding dynamic responses could supply some guidance to the gear condition monitoring and fault diagnosis, especially for the gear tooth crack at early stage.  相似文献   

5.
In this research, both residual and applied stresses are converted to stress intensity factors independently and combined using the superposition principle. The fatigue crack propagation rates are predicted. Experiments using two different loading modes, constant applied stress intensity factor (SIF) range, and constant applied load modes are done for samples with and without initial tensile residual stresses. The samples with initial tensile residual stresses exhibit accelerations of the crack propagation rates. The results show that the weight function method combined with the three-component model provides a good prediction of fatigue crack propagation rates in tensile residual stress fields.  相似文献   

6.
A new type of gear tooth fatigue failure is presented and analysed. It is initiated in the interior of the tooth and is given the self-explanatory name tooth interior fatigue fracture (TIFF).
A fractographic examination of TIFF is presented. The fracture surface of TIFF has characteristic features that distinguish it from other gear failures.
A hypothesis for TIFF initiation is presented. The crack-initiating stresses in the interior of the gear tooth are: (i) a residual tensile stress due to case hardening; and (ii) alternating stresses due to idler usage of the gear.
A finite element analysis is used to compute the stress state history of engaging gear teeth throughout the load cycle. The critical plane fatigue criterion of McDiarmid is employed. The analysis shows that the risk of fatigue initiation is high in the root of the tooth and in a large region in the interior of the tooth. These findings agree with test results where both modes of failure occurred.  相似文献   

7.
Different analytical models of damage accumulation by cyclic plasticity have been developed to predict fatigue crack growth from monotonic, cyclic, fracture toughness and crack propagation threshold properties. The models' development logic is condensed as a flowchart, which emphasizes, in a clear and easily comprehensive way, all the required modeling steps. 1020 and API 5L X60 steels and 7075‐T6 aluminum alloy were used in the experimental verification of the models. Samples were extracted from materials of the same heat, in order to have a reliable comparison. The experimental results are better predicted by the models that use the plastic part of Coffin–Manson's equation to calculate the fatigue life of small volume elements ahead of the crack tip, and expressions of the HRR type to represent the elastic–plastic strain amplitude in the cyclic plastic zone.  相似文献   

8.
9.
The conditions determining the fatigue fracture mechanism in quenched and tempered steel are discussed with reference to fatigue crack propagation mechanism (FCPM) maps. Criteria for the change from one fatigue mechanism to another are presented.  相似文献   

10.
Recent accidents involving railway rails have aroused demand for improved and more efficient rail maintenance strategies to reduce the risk of unexpected rail fracture. Numerical tools can aid in generating maintenance strategies: this investigation deals with the numerical modelling and analysis of short crack growth in rails. Factors that influence the fatigue propagation of short surface‐breaking cracks (head checks) in rails are assessed. A proposed numerical procedure incorporates finite element (FE) calculations to predict short crack growth conditions for rolling contact fatigue (RCF) loading. A parameterised FE model for the rolling‐sliding contact of a cylinder on a semi‐infinite half space, with a short surface breaking crack, presented here, is used in linear‐elastic and elastic–plastic FE calculations of short crack propagation, together with fracture mechanics theory. The crack length and orientation, crack face friction, and coefficient of surface friction near the contact load are varied. The FE model is verified for five examples in the literature. Comparison of results from linear‐elastic and elastic–plastic FE calculations, shows that the former cannot describe short RCF crack behaviour properly, in particular 0.1–0.2 mm long (head check) cracks with a shallow angle; elastic–plastic analysis is required instead.  相似文献   

11.
This paper describes the problem of determining crack initiation location and its influence on crack propagation in a gear tooth’s root. Three different load positions on the gear tooth’s flank were considered for this investigation of crack initiation and propagation. A special test device was used for the single tooth test. It can be concluded from the measurements that a crack can be initiated at very different locations in a tooth’s root and then propagate along its own paths. A numerical investigation into a crack initiation’s position and its influences on its propagation were carried out within the framework of linear fracture mechanics. The influence of a tooth’s load position, the geometry of the tooth’s root, and the influence of non-parallel load distribution on the tooth’s flank were considered when investigating the crack initiation’s position. Results show that linear fracture mechanics can be used for determining crack propagation, if better initial conditions for crack initiation are considered.  相似文献   

12.
A new finite element (FE) framework for fatigue crack propagation (FCP) analysis is proposed. This framework combines the simplicity of standard industrial FCP analysis with the generality and accuracy of a full FE analysis and can be implemented on a small computer by combining standard existing computational tools. In this way it constitutes an attractive alternative to existing approaches. The framework is based on linear elastic fracture mechanics and on FE mesh adaptation. Some novel features are introduced in several of its steps in order to make it efficient and at the same time reasonably accurate. Various computational aspects of the scheme are discussed. A few two‐dimensional numerical examples involving FCP in thin sheets under plane‐stress conditions are presented to demonstrate the performance of the framework. Some of the numerical results are compared to those of laboratory experiments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Correlation in mechanisms and kinetics of step-wise fatigue crack propagation in polyethylene pipe specimens of different geometries is studied experimentally. It is shown that crack propagation in a non-standard specimen cut from a real pipe and conserving the pipe geometry can be effectively simulated using a standard compact tension specimen. Good correlation in both kinetics of step-wise crack propagation and fractography between the specimens is achieved if experimental conditions are chosen to assure equal values of (a) stress intensity factor and (b) stress intensity factor gradient at the initial notch tips. These results extend previous technique of fatigue accelerating slow crack growth used to predict lifetime of polyethylene pipes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The existence of fatigue markings across the entire fracture surface of certain failed components implies that load shedding had occurred during the course of the fracture process. In order to examine the role of load shedding, a sample containing three parallel load paths with the central path being cracked was tested in fatigue using fixed grips. Loads in the three load paths, measured with strain gauges, were observed to be in good agreement with values predicted by theoretical analysis, based upon compliance calculations. Measured fatigue crack propagation rates also agreed well with those predicted from theoretical calculations.  相似文献   

15.
In this paper, the importance of crack front length as a factor controlling growth rate is emphasized. It is shown that fatigue cracks in aluminium alloys do not advance in a coherent manner, but the front is divided into sectors, each of which relates to an individual cracking element. These elements act with some degree of mechanical isolation from their neighbours, and such an arrangement leads to crack front fragmentation and to an increase in the real crack front length.Even on this microscopic scale the crack segments extend as though in a continuum, and, certainly at low stress intensity factors, crack paths are dictated by the local stress direction.  相似文献   

16.
Mechanisms for corrosion fatigue crack propagation   总被引:2,自引:0,他引:2  
ABSTRACT The corrosion fatigue crack growth (FCG) behaviour, the effect of applied potential on corrosion FCG rates, and the fracture surfaces were studied for high‐strength low‐alloy steels, titanium alloys, and magnesium alloys. During investigation of the effect of applied potential on corrosion FCG rates, polarization was switched on for a time period in which it was possible to register the change in the crack growth rate corresponding to the open‐circuit potential and to measure the crack growth rate under polarization. Due to the higher resolution of the crack extension measurement technique, the time rarely exceeded 300 s. This approach made possible the observation of a non‐single mode effect of cathodic polarization on corrosion FCG rates. Cathodic polarization accelerated crack growth when the maximum stress intensity (Kmax) exceeded a certain well‐defined critical value characteristic for a given material‐solution combination. When Kmax was lower than the critical value, the same cathodic polarization, with all other conditions (specimen, solution, pH, loading frequency, stress ratio, temperature, etc.) being equal, retarded or had no influence on crack growth. The results and fractographic observations suggested that the acceleration in crack growth under cathodic polarization was due to hydrogen‐induced cracking (HIC). Therefore, critical values of Kmax, as well as the stress intensity range (ΔK) were regarded as corresponding to the onset of corrosion FCG according to the HIC mechanism and designated as KHIC and ΔKHIC. HIC was the main mechanism of corrosion FCG at Kmax > KHICK > ΔKHIC). For most of the material‐solution combinations investigated, stress‐assisted dissolution played a dominant role in the corrosion fatigue crack propagation at Kmax < KHICK < ΔKHIC).  相似文献   

17.
A computational model for contact fatigue damage analysis of gear teeth flanks is presented in this paper. The model considers the conditions required for the surface fatigue crack initiation and then allows for proper simulation of the fatigue crack propagation that leads to the appearance of small pits on the contact surface. The fatigue process leading to pitting is divided into crack initiation and a crack propagation period.The model for prediction of identification of critical material areas and the number of loading cycles, required for the initial fatigue crack to appear, is based on Coffin-Manson relations between deformations and loading cycles, and comprises characteristic material fatigue parameters. The computational approach is based on continuum mechanics, where a homogenous and elastic material model is assumed and results of cyclic loading conditions are obtained using the finite element method analysis.The short crack theory together with the finite element method is then used for simulation of the fatigue crack growth. The virtual crack extension (VCE) method, implemented in the finite element method, is used for simulating the fatigue crack growth from the initial crack up to the formation of the surface pit. The relationship between the stress intensity factor K and crack length a, which is needed for determination of the required number of loading cycles Np for a crack propagation from the initial to the critical length, is shown.  相似文献   

18.
为明确珠光体钢轨的疲劳裂纹扩展行为,测定U75V重轨钢轧态和热处理态两种条件下的三点弯曲疲劳裂纹扩展速率,采用光学显微镜、扫描电镜、EBSD对钢轨的微观组织、片层、断口形貌及裂纹扩展轨迹进行观察。结果表明:轧态和热处理态钢轨的疲劳辉纹平均间距分别为253,215 nm,轧态钢轨的疲劳断口呈现解理台阶与河流花样形貌,且河流花样趋于合并,而热处理态钢轨的疲劳断口呈现大量的解理台阶及较多的微裂纹和撕裂棱,河流花样以支流为主;热处理态钢轨的疲劳裂纹扩展速率远低于轧态,到达裂纹失稳阶段也较滞后;轧态和热处理态钢轨的疲劳裂纹扩展都是以穿晶断裂为主的穿晶断裂和沿晶断裂混合扩展方式进行,轧态和热处理态钢轨的珠光体片层间距分别为272,148 nm,其中热处理态钢轨的珠光体片层细密且方向多样,存在显著的珠光体团簇,裂纹扩展轨迹中出现较多的分支裂纹和裂纹桥接现象,对扩展起到阻碍作用,是热处理态钢轨抗疲劳裂纹扩展能力优于轧态的重要原因。  相似文献   

19.
Although there are a great number of numerical studies focused on the numerical simulation of crack shape evolution, a deeper understanding is required concerning the numerical parameters and the mathematical modelling. Therefore, the objectives of the paper are the study of the influence of numerical parameters, particularly the radial size of crack front elements and the magnitude of individual crack extensions, the mathematical modelling of crack propagation regimes, and the linking of crack shape changes with K distribution. A relatively simple through-crack geometry, the CT specimen, was studied and the numerical model was validated with experimental results with a good agreement. The K distribution along crack front was found to be the driving force for shape variations. Shape variations were found to be one order of magnitude lower than K variations.  相似文献   

20.
In literature the most common approach to investigate fretting fatigue is based on contact mechanics. Crack initiation parameters of fretting fatigue are developed using elastic solution of two contacting bodies. Even though contact based parameters has been used extensively, they could not fully capture crack initiation mechanism due to the complexities of the fretting fatigue damage process, which depends on pad geometries, surface properties, material properties, and mechanical loading conditions. This has instigated fretting fatigue researcher to investigate other approaches. Recently, taking advantage of the similarities between contact mechanics and fracture mechanics lead to the development of crack analogy methodology (CAM), which defines the stress intensity factor as a fretting fatigue crack initiation parameter. CAM has shown a great potential investigating fretting fatigue. However, it has not been applied to wide range of fretting fatigue scenarios. The scope of this paper is not to focus on analytical development of CAM as much as validating its ability to analyze various fretting fatigue scenarios. Based on CAM, the present study introduces the crack analogy fretting parameter (CAF-parameter) to investigate crack initiation of fretting fatigue, which is equivalent to the change of mode II stress intensity factor at the contact surface, since the change in the stress intensity factor reflects the cyclic mechanism of fatigue. Further, a modification to the CAM is adopted to include various indenter-substrate geometries. Also, CAF-parameter-life curve, similar to the stress-life S-N curve, will be developed as a prediction tool to crack initiation for various geometric configurations using experimental data. This is consistent with presenting fatigue data. The results show similar pattern to plain fatigue with lower damage tolerance. It also shows scatter and dependency on the pad configuration as expected. Finally, the CAF-parameter shows potentials in effectively analyzing/predicting the complex mechanism of fretting fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号