首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We derive the outage capacity region of an M-user fading multiple-access channel (MAC) under the assumption that both the transmitters and the receiver have perfect channel side information (CSI). The outage capacity region is implicitly obtained by deriving the outage probability region for a given rate vector. Given a required rate and average power constraint for each user, we find a successive decoding strategy and a power allocation policy that achieves points on the boundary of the outage probability region. We discuss the scenario where an outage must be declared simultaneously for all users (common outage) and when outages can be declared individually (individual outage) for each user.  相似文献   

2.
We address the problem of achieving outage probability constraints on the uplink of a code-division multiple-access (CDMA) system employing power control and linear multiuser detection, where we aim to minimize the total expended power. We propose a generalized framework for solving such problems under modest assumptions on the underlying channel fading distribution. Unlike previous work, which dealt with a Rayleigh fast-fading model, we allow each user to have a different fading distribution. We show how this problem can be formed as an optimization over user transmit powers and linear receivers, and, where the problem is feasible, we provide conceptually simple iterative algorithms that find the minimum power solution while achieving outage specifications with equality. We further generalize a mapping from outage probability specifications to average signal-to-interference-ratio constraints that was previously applicable only to Rayleigh-faded channels. This mapping allows us to develop suboptimal, computationally efficient algorithms to solve the original problem. Numerical results are provided that validate the iterative schemes, showing the closeness of the optimal and mapped solutions, even under circumstances where the map does not guarantee that constraints will be achieved.  相似文献   

3.
The service outage based allocation problem explores variable-rate transmission schemes and combines the concepts of ergodic capacity and outage capacity for fading channels. A service outage occurs when the transmission rate is below a given basic rate r/sub o/. The allocation problem is to maximize the expected rate subject to the average power constraint and the constraint that the outage probability is less than /spl epsi/. A general class of probabilistic power allocation schemes is considered for an M-parallel fading channel model. The optimum power allocation scheme is derived and shown to be deterministic except at channel states of a boundary set. The resulting service outage achievable rate ranges from 1-/spl epsi/ of the outage capacity up to the ergodic capacity with increasing average power. Two near-optimum schemes are also derived by exploiting the fact that the outage probability is usually small. The second near-optimum scheme significantly reduces the computational complexity of the optimum solution; moreover, it has a simple structure for the implementation of transmission of mixed real-time and non-real-time services.  相似文献   

4.
LDPC codes for fading Gaussian broadcast channels   总被引:1,自引:0,他引:1  
In this work, we study coding over a class of two-user broadcast channels (BCs) with additive white Gaussian noise and multiplicative fading known at the receivers only. Joint decoding of low-density parity-check (LDPC) codes is analyzed. The message update rule at the mapping node linking the users' codes is derived and is found to exhibit an interesting soft interference cancellation property. High performance codes are found using the differential evolution optimization technique and extrinsic information transfer analysis adapted to our multiuser setting. The optimized codes have rates very close to the boundary of the achievable region for binary constrained input for both faded and unfaded channels. Simulation results for moderate block lengths show that our codes operate within less than 1 dB of their respective threshold.  相似文献   

5.
Capacity bounds and power allocation for wireless relay channels   总被引:9,自引:0,他引:9  
We consider three-node wireless relay channels in a Rayleigh-fading environment. Assuming transmitter channel state information (CSI), we study upper bounds and lower bounds on the outage capacity and the ergodic capacity. Our studies take into account practical constraints on the transmission/reception duplexing at the relay node and on the synchronization between the source node and the relay node. We also explore power allocation. Compared to the direct transmission and traditional multihop protocols, our results reveal that optimum relay channel signaling can significantly outperform multihop protocols, and that power allocation has a significant impact on the performance.  相似文献   

6.
7.
In multiuser wireless systems, dynamic resource allocation between users and over time significantly improves efficiency and performance. In this two-part paper, we study three types of capacity regions for fading broadcast channels and obtain their corresponding optimal resource allocation strategies: the ergodic (Shannon) capacity region, the zero-outage capacity region, and the outage capacity region with nonzero outage. We derive the ergodic capacity region of an M-user fading broadcast channel for code division (CD), time division (TD), and frequency division (FD), assuming that both the transmitter and the receivers have perfect channel side information (CSI). It is shown that by allowing dynamic resource allocation, TD, FD, and CD without successive decoding have the same ergodic capacity region, while optimal CD has a larger region. Optimal resource allocation policies are obtained for these different spectrum-sharing techniques. A simple suboptimal policy is also proposed for TD and CD without successive decoding that results in a rate region quite close to the ergodic capacity region. Numerical results are provided for different fading broadcast channels  相似文献   

8.
For pt.I see ibid., vol.47, no.3, p.1083-1102 (2002). We study three capacity regions for fading broadcast channels and obtain their corresponding optimal resource allocation strategies: the ergodic (Shannon) capacity region, the zero-outage capacity region, and the capacity region with outage. In this paper, we derive the outage capacity regions of fading broadcast channels, assuming that both the transmitter and the receivers have perfect channel side information. These capacity regions and the associate optimal resource allocation policies are obtained for code division (CD) with and without successive decoding, for time division (TD), and for frequency division (FD). We show that in an M-user broadcast system, the outage capacity region is implicitly obtained by deriving the outage probability region for a given rate vector. Given the required rate of each user, we find a strategy which bounds the outage probability region for different spectrum-sharing techniques. The corresponding optimal power allocation scheme is a multiuser generalization of the threshold-decision rule for a single-user fading channel. Also discussed is a simpler minimum common outage probability problem under the assumption that the broadcast channel is either not used at all when fading is severe or used simultaneously for all users. Numerical results for the different outage capacity regions are obtained for the Nakagami-m (1960) fading model  相似文献   

9.
The capacity region of code-division multiple access (CDMA) is determined by the set of transmission rates combined with quality-of-service (QoS) requirements which allow for a feasible power allocation scheme for n mobiles in a cellular network. The geometrical and topological properties of the capacity region are investigated in the present paper for the case of unlimited and limited power, respectively. As a central result, we show that the capacity region is convex by breaking the complicated topological structure into characteristic properties of its boundary and interior points, each of interest in itself. Based on these results, we furthermore investigate optimal power assignment schemes in the case that the demand of a community of users is infeasible. Weighted minimax and Bayes solutions are explicitly determined as appropriate means to share the capacity of a cellular network in a reasonable and fair way.  相似文献   

10.
In this letter, optimal power allocation and capacity regions are derived for groupwise successive interference cancellation (GSIC) systems operating in multipath fading channels, under imperfect channel estimation conditions. It is shown that the impact of channel estimation errors on the system capacity is two-fold: It affects the receiver performance within a group of users, as well as the cancellation performance (through cancellation errors). An iterative power allocation algorithm is derived, based on which it can be shown that that the total required received power is minimized when the groups are ordered according to their cancellation errors, and the first detected group has the smallest cancellation error. Performance/complexity tradeoff issues are also discussed by directly comparing the system capacity for different implementations: GSIC with linear minimum-mean-square error (LMMSE) receivers within the detection groups; GSIC with matched filter (MF) receivers; multicode LMMSE systems; and simple all MF receivers systems.  相似文献   

11.
In a mobile wireless system, fading effects can be classified into large-scale (long-term) effects and small-scale (short-term) effects. We use transmission power control to compensate for large-scale fading and exploit receiver antenna (space) diversity to combat small-scale fading. We show that the interferences across the antennas are jointly Gaussian in a large system, and then characterize the signal-to-interference ratio for both independent and correlated (across the antennas) small-scale fading cases. Our results show that when each user's small-scale fading effects are independent across the antennas, there is a clear separation between the gains of transmission power control and diversity combining, and the two gains are additive (in decibels). When each user's small-scale fading effects are correlated across the antennas, we observe that, in general, the gains of transmission power control and diversity combining are coupled. However, when the noise level diminishes to zero, using maximum ratio combining “decouples” the gains and achieves the same diversity gain as in the independent case. We then characterize the Pareto-optimal (minimum) transmission power allocation for the cases of perfect and noisy knowledge of the desired user's large-scale fading effects. We find that using antenna diversity leads to significant gains for the transmission power  相似文献   

12.
Capacity of fading channels with channel side information   总被引:29,自引:0,他引:29  
We obtain the Shannon capacity of a fading channel with channel side information at the transmitter and receiver, and at the receiver alone. The optimal power adaptation in the former case is “water-pouring” in time, analogous to water-pouring in frequency for time-invariant frequency-selective fading channels. Inverting the channel results in a large capacity penalty in severe fading  相似文献   

13.
14.
We present a minimal energy packet scheduling and rate control scheme with a strict maximum delay constraint. This problem occures natually in real-time wireless multimedia transmission where a hard delay limit is imposed on each packet. In general, the communication link is assumed to be a diversity channel with multiple parallel sub-channels(e.g. OFDM, or MIMO eigenchannels.) We present both the theoretical optimal solution, which assumes prescient traffic and channel knowlodge, and a causal scheduler where the future is only known statistically. We show that the causal scheduler performs well, to within 3 dB of the prescient optimal in a single channel, and is even better with diversity channels.  相似文献   

15.
随着互联网和宽带通信需求的不断增长,未来的多波束宽带卫星系统将主要工作在Ka频段或更高频段,在这些高频段下,时变的天气和降雨是影响系统性能的主要因素。针对这一问题,提出了基于公平性指标的启发式多波束动态功率分配方法,并采用了波束用户分群方法降低算法的计算复杂度,从而能实现系统性能和复杂性之间的交换。仿真结果表明,相比于传统的静态功率分配算法,提出的算法可以在雨衰环境下服务更多的用户,实现更高的功率效率;另一方面,算法也明显提高了系统资源分配的公平性。  相似文献   

16.
This letter presents two novel power allocation schemes for bidirectional amplify-and-forward (AF) relaying over Rayleigh fading channels through the exploitation of channel mean strength. The first scheme aims to maximize the upper bound of average sum rate, and the other aims to achieve the trade-off of outage probability between two terminals. Numerical results show considerable performance improvement in comparison with conventional power allocation approaches.  相似文献   

17.
We consider the design of power-adaptive systems for minimizing the average bit-error rate over flat fading channels. Channel state information, obtained through estimation at the receiver, is sent to the transmitter over a feedback channel, where it is used to optimally adapt the transmit power. We consider finite-state optimal policies to reflect the limitations of the feedback channel. We develop an iterative algorithm that determines the optimal finite-state power control policy given the probability density function (PDF) of the fading. Next, we present a discretized formulation of the problem and obtain a suboptimal solution via standard dynamic programming techniques. The discretization of the problem enables us to obtain a suboptimal policy for arbitrary fading channels for which the analytic expression of the fading probability density function is not available. Simulation results are used to draw conclusions regarding the effects of limited feedback channel capacity, delay and number of states on the bit-error rate performance of the proposed policies under slow and moderate fading conditions  相似文献   

18.
An approach to the simulation of many of the channel impairments attributed to multipath fading and ghosting of a television signal is discussed. The use of the Hewlett Packard 11759D Dynamic Ghosting Simulator, which is capable of generating fading models ranging from static transmission conditions to dynamic cases of airplane flutter, tower sway, and reception by a mobile receiver in the simulation is described. All of these conditions can be used to subject future receivers, equalizers, and ghost cancellation circuitries to field-testing within the laboratory environment  相似文献   

19.
A multichannel (MC) system with optimal diversity reception and erasures correcting decoding of a block code applied to a Rayleigh fading channel is considered. The bit-error rate (BER) as a function of the signal-to-noise ratio has been found. It is shown that the proposed system has a lower BER than both the MC with forward-error correction and the MC with optimal uncoded diversity reception for the same redundancy  相似文献   

20.
Optimum power control over fading channels   总被引:1,自引:0,他引:1  
We study optimal constant-rate coding schemes for a block-fading channel with strict transmission delay constraint, under the assumption that both the transmitter and the receiver have perfect channel-state information. We show that the information outage probability is minimized by concatenating a standard “Gaussian” code with an optimal power controller, which allocates the transmitted power dynamically to the transmitted symbols. We solve the minimum outage probability problem under different constraints on the transmitted power and we derive the corresponding power-allocation strategies. In addition, we propose an algorithm that approaches the optimal power allocation when the fading statistics are not known. Numerical examples for different fading channels are provided, and some applications discussed. In particular, we show that minimum outage probability and delay-limited capacity are closely related quantities, and we find a closed-form expression for the delay-limited capacity of the Rayleigh block-fading channel with transmission over two independent blocks. We also discuss repetition diversity and its relation with direct-sequence or multicarrier spread-spectrum transmission. The optimal power-allocation strategy in this case corresponds to selection diversity at the transmitter. From the single-user point of view considered in this paper, there exists an optimal repetition diversity order (or spreading factor) that minimizes the information outage probability for given rate, power, and fading statistics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号