首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Design of ZnO/Ag/ZnO multilayer transparent conductive films   总被引:3,自引:0,他引:3  
We have studied the properties of ZnO/Ag/ZnO multilayers prepared on glass substrates by simultaneous RF magnetron sputtering of ZnO and dc magnetron sputtering of Ag. The electrical and optical performance of Ag and ZnO single layer films was also investigated. Different optimization procedures were used for good transparent conductive film. Several analytical tools such as spectrophotometer, scanning electron microscope (SEM), four-point probes were used to explore the causes of the changes in electrical and optical properties. Low sheet resistance of 3 Ω/sq. and transmittance over 90% at 580 nm was achieved. The results of optimization condition of both oxide layers and metallic Ag layers were illustrated.  相似文献   

2.
A series of ZnO/Cu/ZnO multilayer films has been fabricated from zinc and copper metallic targets by simultaneous RF and DC magnetron sputtering. Numerical simulation of the optical properties of the multilayer films has been carried out in order to guide the experimental work. The influences of the ZnO and Cu layer thicknesses, and of O2/Ar ratio on the photoelectric and structural properties of the films were investigated. The optical and electrical properties of the multilayers were studied by optical spectrometry and four point probe measurements, respectively. The structural properties were investigated using X-ray diffraction. The performance of the multilayers as transparent conducting coatings was compared using a figure of merit. In experiments, the thickness of the ZnO layers was varied between 4 and 70 nm and those of Cu were between 8 and 37 nm. The O2/Ar ratios range from 1:5 to 2:1. Low sheet resistance and high transmittance were obtained when the film was prepared using an O2/Ar ratio of 1:4 and a thickness of ZnO (60 nm)/Cu (15 nm)/ZnO (60 nm).  相似文献   

3.
Multilayer coatings consisting of thin silver layer sandwiched between layers of Al-doped ZnO (AZO) were prepared by electron beam evaporation. The optical and electrical performances of AZO/Ag/AZO multilayers were investigated. Optimization of the multilayer coatings resulted with low sheet resistance of 7.7 Ω/sq and transmittance of 85%. The influence of thickness of each layer on the optic and electrical performance was analyzed. The sheet resistance of the multilayer was reduced to 5.34 Ω/sq. and the average transmittance was improved to 90% by the thermal treatment. The coatings had satisfactory properties of low resistance, high transmittance and thermal stability.  相似文献   

4.
Multilayer coatings consisting of thin silver layers sandwiched between layers of transparent conducting metal oxides are investigated from the view point of low-resistance electrodes for use in flat panel displays, solar cells, etc. ZnO/Ag/ZnO multilayer films were prepared on glass substrates by simultaneous RF magnetron sputtering of ZnO and dc magnetron sputtering of Ag. Optimization of the deposition conditions of both ZnO layers and metallic layers were performed for better electrical and optical properties. The structural, electrical and optical properties of the films (deposited at room temperature, different substrate temperature and annealed at different conditions) were characterized with various techniques. We could not produce high-quality transparent conductive electrodes simply by annealing at various temperatures. However, improved electrical properties and a considerable shift in the transmittance curves was observed after heat treatment. The experimental results show that the electrical resistivity of as-grown films can be decreased to 10− 5 Ω cm level with post-annealing at 400 °C for 2 h in vacuum atmosphere. After heat treatment, the sheet resistance was reduced as much as 20% which was due to the increased grain size of Ag film. The samples heat treated at 200-400 °C under vacuum or nitrogen atmosphere showed the best electrical properties. The key to the superior electrical and optical properties of the multilayer is the optimization of growth conditions of the silver layer by careful control of the oxide properties and the use of appropriate annealing temperature and atmosphere.  相似文献   

5.
Ga–Al doped ZnO/metal/Ga–Al doped ZnO multilayer films were deposited on polyethersulfone (PES) substrate at room temperature. The multilayer films consisted of intermediate Ag metal layers, top and bottom Ga–Al doped ZnO layer. The multilayer with PES substrate had advantages such as low sheet resistance, high optical transmittance in visible range and stable mechanical properties. From the results, sheet resistances of multilayer showed 9 Ω/sq with 12 nm of Ag metal layer thickness. Average optical transmittance of multilayer film showed 84% in visible range (380–770 nm) with 12 nm of Ag metal layer thickness. Moreover the multilayers showed stable mechanical properties than single-layered Ga–Al doped ZnO sample during the bending test due to the existence of ductile Ag metal layer.  相似文献   

6.
Al-doped ZnO (AZO)/Ag/AZO multilayer coatings (50-70 nm thick) were grown at room temperature on glass substrates with different silver layer thickness, from 3 to 19 nm, by using radio frequency magnetron sputtering. Thermal stability of the compositional, optical and electrical properties of the AZO/Ag/AZO structures were investigated up to 400 °C and as a function of Ag film thickness. An AZO film as thin as 20 nm is an excellent barrier to Ag diffusion. The inclusion of 9.5 nm thin silver layer within the transparent conductive oxide (TCO) material leads to a maximum enhancement of the electro-optical characteristics. The excellent measured properties of low resistance, high transmittance in the visible spectral range and thermal stability allow these ultra-thin AZO/Ag/AZO structures to compete with the 1 μm thick TCO layer currently used in thin film solar cells.  相似文献   

7.
随着分辨率的提高,传统金属电极在电阻率和抗氧化性能方面已经不适合作为需要高温热处理的场致发射显示器件中的薄膜电极。本文采用5.77%(原子比)Sn掺杂的ZnO:Sn作为Ag层的保护层,利用磁控溅射法制备ZnO:Sn/Ag/ZnO:Sn复合薄膜及其电极,并采用X射线衍射、光学显微镜、扫描电子显微镜和电性能测试系统研究复合薄膜及其电极在经过不同温度退火后的晶体结构、表面形貌和电学性能的变化。ZnO:Sn膜层致密,25 nm厚的ZnO:Sn足以保护Ag层在530℃的高温中不被明显氧化,电极电阻率低达2.0×10-8Ω.m左右。  相似文献   

8.
A nanoscaled Al thin film was placed between two ZnO thin films to form a ZnO/Al/ZnO multilayer thin film structure. Individual Al and ZnO thin films with difference thicknesses were first prepared and characterized for the optical and electrical properties. The multilayer structure was then obtained by depositing individual layers with desired thicknesses in sequence. We show that by appropriate selections of layer thickness, the use of a nanoscaled Al mid-layer in ZnO enhances the electrical conductivity of the ZnO without scarifying its optical transmittance.  相似文献   

9.
We investigated the electrical and optical properties of ZnO/Ag/ZnO multi-layer electrodes obtained by ion beam sputtering for flexible optoelectronic devices. This multi-layer structure has the advantage of adjusting the layer thickness to favor antireflection and the surface plasmon resonance of the metallic layer. Inserting a thin (Ag) metallic layer between two (ZnO) oxide layers decreases the sheet resistance while widening the optical transmittance window in the visible. We found that the optimal electrode is made up of a 10 nm thin Ag layer between two 35 nm and 20 nm thick ZnO layers, which resulted in a low sheet resistance (Rsq = 6 Ω/square), a high transmittance (T ≥ 80% in the visible) and the highest figure of merit of 1.65 × 10-2 square/Ω.  相似文献   

10.
Conducting and transparent indium-doped ZnO thin films were deposited on sodocalcic glass substrates by the sol–gel technique. Zinc acetate and indium chloride were used as precursor materials. The electrical resistivity, structure, morphology and optical transmittance of the films were analyzed as a function of the film thickness and the post-deposition annealing treatments in vacuum, oxygen or argon. The obtained films exhibited a (002) preferential growth in all the cases. Surface morphology studies showed that an increase in the films' thickness causes an increase in the grain size. Films with 0.18 μm thickness, prepared under optimal deposition conditions followed by an annealing treatment in vacuum showed electrical resistivity of 1.3 × 10 2 Ωcm and optical transmittance higher than 85%. These results make ZnO:In thin films an attractive material for transparent electrodes in thin film solar cells.  相似文献   

11.
ZnO thin films were deposited by a sol-gel process using zinc acetate dihydrate and 2-methoxyethanol as starting precursor and solvent, respectively. Ag-nanoparticles were prepared with uniform size (4.4 nm) by the spontaneous reduction method of Ag 2-ethylhexanoate in Dimethyl sulfoxide. The optical and electrical characteristics of ZnO films with the introduction of 3A metal (Al, Ga, and In)-dopants and/or Ag-nanoparticles were evaluated. The optical and electrical properties of metal-doped ZnO films were improved and light scatter, charge emission and the scattering behavior of Ag-nanoparticles incorporated into the ZnO thin film were measured. The introduction of Ag-nanoparticles into metal-doped ZnO films induced a slight decrease in the optical transmittance but an increase in the electrical sheet resistance.  相似文献   

12.
We have investigated the effect of electron beam irradiation as well as insertion of a Ag layer on the electrical and optical properties of the ITO or IZO films. The results show that electron beam irradiation as well as inserting a very thin Ag layer can significantly reduce sheet resistance of the ITO/Ag/ITO and IZO/Ag/IZO films. The electron beam irradiation also increases light transmittance and optical band gap of the ITO/Ag/ITO multilayer films; meanwhile, it has not influence on the transmittance of the IZO/Ag/IZO films. These results can be explained by that In and Zn cation in IZO film have strong tendency to preserve their coordination with oxygen.  相似文献   

13.
In this paper a ZnS/Ag/ZnS (ZAZ) nano-multilayer structure is designed theoretically and optimum thicknesses of ZnS and Ag layers are calculated at 35 and 17 nm, respectively. Several conductive transparent ZAZ nano-multilayer films are deposited on a glass substrate at room temperature by thermal evaporation method. Changes in the electrical, structural, and optical properties of samples are investigated with respect to annealing in air at different temperatures. High-quality nano-multilayer films with the sheet resistance of 8 Ω/sq and the optical transmittance of 83% at 200 °C annealing temperature are obtained. The figure of merit is applied on the ZAZ films and their performance as transparent conductive electrodes are determined.  相似文献   

14.
Transparent conductive oxides (TCO) are indispensable as front electrode for most of thin film electronic devices such as transparent electrodes for flat panel displays, photovoltaic cells, windshield defrosters, transparent thin film transistors, and low emissivity windows. Thin films of aluminum-doped zinc oxide (AZO) have shown to be one of the most promising TCOs. In this study, three layered Al-doped ZnO (AZO)/ZnMgO/AZO heterostructures were prepared by filtered cathodic arc deposition (FCAD) on glass substrates. The objective is to find a set of parameters that will allow for improved optical and electrical properties of the films such as low resistivity, high mobility, high number of charge carriers, and high transmittance. We have investigated the effect of modifications in thickness and doping of the ZnMgO inner layer on the structural, electrical, and optical characteristics of the stacked heterostructures.  相似文献   

15.
Thin metallic films of Zn and In/Zn were deposited onto glass substrates by thermal evaporation under vacuum. The metallic films were submitted to a thermal oxidation in air, at 623 K, for different oxidation times (30–90 min), in order to be oxidized. Structural and morphological analyses (X-ray diffraction, transmission electron microscopy and scanning electron microscopy) revealed that the obtained undoped and In-doped ZnO thin films possess a polycrystalline structure. Transmission spectra were recorded in spectral domain from 280 to 1400 nm. The influence of In doping and oxidation parameters as well, on the optical parameters (transmittance, optical bandgap, Urbach energy) were analysed. It was clearly evidenced that by In doping, the optical properties of ZnO films were improved. The temperature dependence of electrical conductivity was studied using surface-type cells with Ag electrodes. The obtained results indicate that In-doped ZnO films exhibit an enhancement of electrical conductivity with few orders of magnitude when compared with non-doped ones.  相似文献   

16.
We report on transparent and highly conductive multilayer electrodes prepared at room temperature by RF sputtering of zinc tin oxide (ZTO) and thermal evaporation of ultrathin silver (Ag) as top contact for transparent organic light emitting diodes (TOLED). Specifically, we study the morphological, electrical and optical properties of the multilayer structure in particular of the thin Ag film. The tendency of Ag to form agglomerates over time on top of ZTO is shown by atomic force microscopy. From the optical constants derived from ellipsometric measurements we evidenced a bulk like behavior of an Ag film with a thickness of 8 nm embedded in ZTO leading to a low sheet resistance of 9 Ω/sq. Furthermore we verify the optical constants by simulation of an optimized ZTO/Ag/ZTO structure. As an application we present a highly efficient TOLED providing a device transmittance of > 82% in the visible part of the spectrum. The TOLED shows no damage caused by sputtering on a lighting area of 80 mm2 and exhibits efficiencies of 43 cd/A and 36 lm/W.  相似文献   

17.
We have investigated the effect of insertion of a Ag layer in ITO film as well as electron beam irradiation to the multilayer films on the electrical and optical properties of the ITO-based multilayer deposited by magnetron sputtering method at room temperature. Inserting a very thin Ag layer between ITO layers resulted in a significant decrease in sheet resistance and increased the optical band gap of the ITO/Ag/ITO multilayer to 4.35 eV, followed by a high transparency of approximately 80% at a wavelength of 375 nm. We have also fabricated ultraviolet light-emitting diodes (LED) by using the ITO/Ag/ITO p-type electrode with/without electron beam irradiation. The results show that the UV-LEDs having ITO/Ag/ITO p-electrode with electron beam irradiation produced 19% higher optical output power due to the low absorption of light in the p-type electrode.  相似文献   

18.
GZO/Ag/GZO多层薄膜制备、结构与光电特性的研究   总被引:1,自引:0,他引:1  
采用射频磁控溅射和离子束溅射联合设备在玻璃衬底上制备出了具有良好附着性、低电阻率和高透过率的GZO/Ag/GZO(ZnO掺杂Ga_2O_3简称GZO)多层薄膜.X射线衍射谱表明GZO/Ag/GZO多层薄膜是多晶膜,GZO层具有ZnO的六角纤锌矿结构,最佳取向为(002)方向;Ag层是立方结构,具有(111)取向.在GZO层厚度一定的情况下,研究了Ag层厚度的变化对多层膜结构以及光电特性的影响.研究发现,当Ag层厚度为10nm时,3层膜的电阻率为9×10~(-5)Ω·cm,在可见光范围内平均透过率达到89.7%,薄膜对应的品质因子数值为3.4×10~(-2)Ω~(-1).  相似文献   

19.
New transparent conductive films having the sandwich structure of gallium-indium-oxide/silver/gallium-indium-oxide (GIO/Ag/GIO) were prepared by conventional magnetron sputtering method at ambient substrate temperature. The electrical and optical properties of the films were compared with those of conventional indium-tin-oxide (ITO) films and ITO/Ag/ITO sandwich films. The GIO/Ag/GIO (40 nm/8 nm/40 nm) sandwich films, in which the GIO film was deposited using a GIO ceramic target with In content [In/(Ga + In)] of 10 at.%, exhibited a low sheet resistance of 11.3 Ω/sq and a large average transmittance of over 92.9% in the visible region (400-800 nm). This GIO/Ag/GIO films also exhibited a novel characteristic of transparency in the ultraviolet region; they showed high transmittance of 82.2% at the wavelength of 330 nm and 40.8% at the wavelength of 280 nm, which was not shown in the ITO films and the ITO/Ag/ITO sandwich films. The GIO/Ag/GIO sandwich films are useful as transparent electrode for emitting devices of ultraviolet radiation because of both their high conductivity and high transparency in the ultraviolet region.  相似文献   

20.
Aluminum-doped ZnO (AZO) transparent conducting films were deposited on glass substrates with and without intrinsic ZnO (i-ZnO) buffer layers by a home made and low cost radio-frequency (RF) magnetron sputtering system at room temperature in pure argon ambient and under a low vacuum level. The films were examined and characterized for electrical, optical, and structural properties for the application of CIGS solar cells. The influence of sputter power, deposition pressure, film thickness and residual pressure on electrical and optical properties of layered films of AZO, i-ZnO and AZO/i-ZnO was investigated. The optimization of coating process parameters (RF power, sputtering pressure, thickness) was carried out. The effects of i-ZnO buffer layer on AZO films were investigated. By inserting thin i-ZnO layers with a thickness not greater than 125 nm under the AZO layers, both the carrier concentration and Hall mobility were increased. The resistivity of these layered films was lower than that of single layered AZO films. The related mechanisms and plasma physics were discussed. Copper indium gallium selenide (CIGS) thin film solar cells were fabricated by incorporating bi-layer ZnO films on CdS/CIGS/Mo/glass substrates. Efficiencies of the order of 7–8% were achieved for the manufactured CIGS solar cells (4–5 cm2 in size) without antireflective films. The results demonstrated that RF sputtered layered AZO/i-ZnO films are suitable for application in low cost CIGS solar cells as transparent conductive electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号