首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaporation of Ag in the presence of an electron cyclotron resonance (ECR) oxygen plasma was used to deposit Ag2−xO films with a range of stoichiometries onto r-plane sapphire substrates. A quartz crystal oscillator (QCO) was used to accurately measure the silver and oxygen arrival rates and establish the O/Ag flux ratio needed to produce films with nominal Ag2O stoichiometry. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis indicates that the Ag2−xO films are not single phase but contain signatures of coexisting Ag2O and AgO components. XRD shows that the lattice matching with the r-plane sapphire substrate causes the Ag2O phase to grow with <002> heteroepitaxial crystallites coexisting with crystallites having <111> normal and random in-plane orientation. The AgO phase also forms with crystallites having <002> heteroepitaxy as well as crystallites with <111> normal and random in-plane orientation. The mixed phase Ag2−xO films exhibit approximately 77% optical transmission over the visible range (500 nm to 700 nm) and have a single absorption edge near 3.3 eV. Four-point van der Pauw conductivity and Hall effect measurements indicate that the Ag2−xO films are p-type with a conductivity on the order of 3 × 10− 3 Ω− 1 cm− 1.  相似文献   

2.
SrLa1−xRExGa3O7 (RE = Eu3+, Tb3+) phosphor films were deposited on quartz glass substrates by a simple Pechini sol-gel method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy, field-emission scanning electron microscopy, photoluminescence spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 700 °C and crystallized fully at 900 °C. The results of FT-IR spectra were in agreement with those of XRD. Uniform and crack-free films annealed at 900 °C were obtained with average grain size of 80 nm, root mean square roughness of 46 nm and thickness of 130 nm. The RE ions showed their characteristic emission in crystalline SrLa1−xRExGa3O7 films, i.e., Eu3+5D0-7FJ (J = 0, 1, 2, 3, 4), Tb3+5D4-7FJ (J = 6, 5, 4, 3) emissions, respectively. The optimum concentrations (x) of Eu3+ and Tb3+ were determined to be 50, and 80 mol% in SrLa1−xRExGa3O7 films, respectively.  相似文献   

3.
A comparative study of the microstructure and dielectric properties between Ba1−xCaxTiO3 (BCT) ceramics and films were performed in the whole Ca concentration range of x = 0-1. The ceramics were prepared by conventional solid-state reaction technique and the films by the method of pulsed-laser deposition. X-ray diffraction (XRD) study of the BCT ceramics exhibited a pure tetragonal phase for x = 0-0.25, a tetragonal-orthorhombic diphase for x = 0.25-0.85 and a pure orthorhombic phase for x = 0.90-1.00. And the dielectric phase transition temperature from tetragonal to cubic was marginally affected by the Ca doping into BaTiO3. However, BCT films deposited on Pt/Si/SiO2/Si substrates showed a different microstructure and dielectric properties. Tetragonal-orthorhombic diphase was not found in the BCT films for x = 0.25-0.85, and a large decrease of the Curie point and diffuse phase transition were observed in the BCT films. Based on the compositional analysis, such phenomena were ascribed to the occupancy of some Ca2+ to the Ti4+ sites in the BCT films.  相似文献   

4.
Thin films of Bi3.15Nd0.85Ti3O12 (BNT) and Bi3.15Nd0.85Ti3 − xZrxO12 (BNTZx, x = 0.1 and 0.2) were fabricated on Pt/TiO2/SiO2/Si(100) substrates by a chemical solution deposition (CSD) technique at 700 °C. Structures, surface morphologies, leakage current characteristics and Curie temperature of the films were studied as a function of Zr ion content by X-ray diffraction, atomic force microscopy, ferroelectric test system and thermal analysis, respectively. Experimental results indicate that Zr ion substitution in the BNT film markedly decreases the leakage current of the film, while almost not changing the Curie temperature of the film, which is at about 420-460 °C. The decrease of the leakage current in BNTZx films is that the conduction by the electron hopping between Ti4+ and Ti3+ ions is depressed because Zr4+ ions can block the path between two adjacent Ti ions and enlarge hopping distance.  相似文献   

5.
P.C. Wang  M.C. Lin  M.J. Chen 《Thin solid films》2010,518(24):7501-7504
LiAlxOy films with thicknesses of 65-200 nm were deposited by the atomic layer deposition (ALD) technique on the LZ101 Mg-Li alloy. The ALD-deposited LiAlxOy films exhibit an amorphous structure and have an atomic ratios of Li:Al:O = 1:1:2. The potentio-dynamic polarization tests show that the corrosion resistance of Mg-Li alloys can be significantly improved due to the dense and pinhole-free structure as well as the excellent coverage and conformity of the ALD-deposited LiAlxOy films.  相似文献   

6.
Transparent semiconductor thin films of Zn1 − xTixO (0 ≦ x ≦ 0.12) were deposited on alkali-free glass substrates by the sol-gel method. The effects of Ti addition on the crystallization, microstructure, optical properties and resistivity of ZnO thin films were investigated. The as-coated films were preheated at 300 °C, and then annealed at 500 °C in air ambiance. X-ray diffraction results showed all polycrystalline Zn1  xTixO thin films with preferred orientation along the (002) plane. Ti incorporated within the ZnO thin films not only decreased surface roughness but also increased optical transmittance and electrical resistivity. In the present study, the Zn0.88Ti0.12O film exhibited the best properties, namely an average transmittance of 91.0% (an increase of ~ 12% over the pure ZnO film) and an RMS roughness value of 1.04 nm.  相似文献   

7.
HfO2 films at various O2/Ar flow ratios were prepared by reactive dc magnetron sputtering. The effects of O2/Ar ratio on the structure and properties of HfO2 films were studied using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-Visible spectroscopy. The results showed that the HfO2 films were amorphous at different O2/Ar ratios, and the atomic ratio of O/Hf in the HfO2 films at high O2/Ar ratio was nearly to 2:1. The peaks of Hf4f and O1s shifted to higher binding energy with increasing the oxygen flow proportion. The HfO2 films at high O2/Ar ratio had high transmissivity at the range of 400-1100 nm.  相似文献   

8.
In this paper, a series of pure Ni1 − xZnxFe2O4 (0 ≤ x ≤ 1) spinel ferrites have been synthesized successfully using a novel route through calcination of tailored hydrotalcite-like layered double hydroxide molecular precursors of the type [(Ni + Zn)1 − x − yFey2+Fex3+(OH)2]x+(SO42−)x/2·mH2O at 900 °C for 2 h, in which the molar ratio of (Ni2+ + Zn2+)/(Fe2+ + Fe3+) was adjusted to the same value as that in single spinel ferrite itself. The physico-chemical characteristics of the LDHs and their resulting calcined products were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Mössbauer spectroscopy. The results indicate that calcination of the as-synthesized LDH precursor affords a pure single Ni1 − xZnxFe2O4 (0 ≤ x ≤ 1) spinel ferrite phase. Moreover, formation of pure ferrites starting from LDHs precursors requires a much lower temperature and shorter time, leading to a lower chance of side-reactions occurring, because all metal cations on the brucite-like layers of LDHs can be uniformly distributed at an atomic level.  相似文献   

9.
The potentiostatic electrodeposition of n-type Bi2Te3−ySey thermoelectric films onto stainless steel and gold substrates from nitric acid aqueous solutions has been carried out at room temperature. The cathodic process during the electrodeposition of Bi2Te3−ySey films was investigated by cyclic voltammetric experiments. The structure and surface morphology of Bi2Te3−ySey films deposited on both substrates were characterized by X-ray diffraction (XRD) and environment scanning electron microscopy (ESEM) coupled with energy dispersive spectroscopy (EDS). Electrical and thermoelectric properties of as-deposited films were also measured at room temperature. The results show that the reduction process under the same depositing conditions on gold and stainless steel substrates is very different. On gold substrates, H2SeO3 in the electrolyte is firstly reduced to elemental Se, and then the deposited Se reacts with HTeO2+ and Bi3+ to form Bi2Te3−ySey alloy. On stainless steel substrates, HTeO2+ in the electrolyte is firstly replaced by elemental Fe to produce elemental Te, and subsequently the generated Te reacts with H2SeO3 and Bi3+ to form Bi2Te3−ySey alloy. Analysis of ESEM show that the surface morphology of the films electrodeposited on gold substrates is more compact than that on stainless steel substrates. The XRD patterns indicate that the films electrodeposited on both substrates exhibit preferential orientation along (1 1 0) plane, but the relative peak intensity of (0 1 5) and (2 0 5) planes on stainless steel substrates is stronger than that on gold substrates. The Seebeck coefficient and electrical resistivity of the films deposited on stainless steel substrates are higher than that on gold substrates.  相似文献   

10.
In this paper, we present a simple microwave-assisted synthesis of Zn1  xCoxO nanopowders. With the advantages of the microwave-assisted method, we have successfully synthesized good crystalline quality and good surface morphology Zn1  xCoxO nanopowders. The nanopowders are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-VIS absorption, and micro-Raman spectroscopy. We found, in the synthesis process, the surfactant Triethanolamine (TEA) plays an important role on the morphology of Zn1  xCoxO nanoparticles. The XRD study shows that for Co doping up to 5%, Co2+ ions are successfully incorporated into the ZnO host matrix. The absorption spectra of Zn1  xCoxO (x = 1-5%) nanopowders show several peaks at 660, 611 and 565 nm, indicating the presence of Co2+ ions in the tetrahedral sites. The Raman study shows that the linewidth of E2low mode increases with Co concentration, which further indicates the incorporation of Co2+ ions into the ZnO host matrix.  相似文献   

11.
Lead titanate thin films were deposited by atomic layer deposition on Si(100) using Ph4Pb and Ti(O-i-Pr)4 as metal precursors and O3 and H2O as oxygen sources. The influence of the Ti : Pb precursor pulsing ratio on the film growth, stoichiometry and quality was studied at two different temperatures, i.e. 250 and 300 °C. Uniform and stoichiometric films were obtained using a Ti : Pb precursor pulsing ratio of 1 : 10 at 250 °C or 1 : 28 at 300 °C. The as-deposited films were amorphous but the crystalline PbTiO3 phase was obtained by rapid thermal annealing at 600-900 °C both in N2 and O2 ambient. Thin PbTiO3 films were visually uniform and roughness values for as-deposited and annealed films were observed by atomic force microscopy.  相似文献   

12.
Mu-Hsuan Chan 《Thin solid films》2010,518(24):7300-7303
Zirconium oxynitride (ZrNxOy) thin films were prepared by d.c. magnetron sputtering using air as a reactive gas. Replacing conventionally used N2/O2 with air as a reactive gas allows the process to perform at high base pressures (low vacuum), which could drastically reduce the processing time. The color of the obtained films changed from light golden and dark golden for low air/Ar flow ratios, to dark violet and bright cyan for high air/Ar ratios. X-ray diffraction patterns show that the films transformed from ZrN and Zr2ON2 mixed phases to a Zr2ON2 phase, and then an m-ZrO2 phase. The thickness of the films decreased slightly with increasing the air/Ar flow ratio. ZrNxOy films possessed a mixture of Zr-N-O, Zr-N and Zr-O chemical binding states determined from X-ray photoelectron spectroscopy. ZrNxOy films with mainly a Zr2ON2 phase exhibited the band gap of 1.96-2.26 eV, while the m-ZrO2 films with slight nitrogen incorporation had a band gap of 2.32 eV, evaluated from transmittance spectra. By varying the air/Ar ratio during deposition, the nitrogen/oxygen content of the films could be controlled and hence, the color, crystal structure, atomic composition, and band gap of the films could be tailored.  相似文献   

13.
Lanthanum titanium oxynitride (LaTiOxNy) thin films are studied with respect to their dielectric properties in low and high frequencies. Thin films are deposited by radio frequency magnetron sputtering on different substrates. Effects of nitrogen content and crystalline quality on dielectric properties are investigated. In low-frequency range, textured LaTiOxNy thin films deposited on conductive single crystal Nb-STO show a dielectric constant ε′ ≈ 140 with low losses tanδ = 0.012 at 100 kHz. For the LaTiOxNy polycrystalline films deposited on conductive silicon substrates with platinum (Pt/Ti/SiO2/Si), the tunability reached up to 57% for a weak electric field of 50 kV/cm. In high-frequency range, epitaxial LaTiOxNy films deposited on MgO substrate present a high dielectric constant with low losses (ε′ ≈ 170, tanδ = 0.011, 12 GHz).  相似文献   

14.
CNx–TiNx composite films were prepared on high-speed steel (HSS) substrate by pulsed KrF excimer laser co-deposition process with graphite/Ti combined targets and a substrate temperature of 200 °C. The composition, morphology and microstructure of the films were characterized by energy dispersive X-ray spectrum (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). The adhesion and tribological performance of the films were investigated using a conventional scratch tester and a ball-on-disk tribometer, respectively. In the graphite/Ti range of 0.5–2.0 of the target, TiNx, a-CNx and metallic Ti phase were found in the composite films. The TiNx disappeared in the films at a high graphite/Ti ratio of the target. With increasing the graphite/Ti ratio of the target, the adhesion to substrate of the composite films deteriorated from 46 N to 26 N, and the friction coefficient decreased from 0.23 to 0.17. The composite film deposited at the graphite/Ti ratio of 1.0 showed a low friction coefficient, good adhesion and wear rate of 3.2 × 10−7 mm3/Nm in humid air.  相似文献   

15.
Cu2O/TiO2, Cu/Cu2O/TiO2 and Cu/Cu2O/CuO/TiO2 heterojunctions were prepared and studied for their potential application as photocatalysts able to induce high performance under visible light. Orange II was used as a representative dye molecule. The effect of the amount and composition of the photosensitizers toward the activation of TiO2 was studied. In each case, the global mechanism of Inter Particle Electrons Injection (IPEI) was discussed. The highest photocatalytic activity was observed for the system Cu/Cu2O/CuO (MB2 catalyst) under visible light (t1/2 = 24 min, k = 159.7 × 10−3 min−1) and for the heterojunction cascade Cu/Cu2O/CuO/TiO2 (MB2 (50%)/TiO2) under UV–vis light (t1/2 = 4 min, k = 1342 × 10−3 min−1). In the last case, the high performance was attributed firstly to the electromotive forces developed under this configuration in which CuO energy bands mediate the electrons transfer from Cu2O to TiO2. The formation of monobloc sensitizers also accounts for the decrease of the probability of the charges lost. It was demonstrated that “Cu2O/CuO” governs the capability of the heterojunction cascade and Cu does not play a significant role regardless of the heterojunction cascade efficiency. The electrical energy consumption per order of magnitude for photocatalytic degradation of Orange II was investigated for some representative catalytic systems. Visible/MB2 and UV/vis MB2 (50%)/TiO2 exhibited respectively 0.340 and 0.05 kWh m−3 demonstrating the high efficiency of the systems.  相似文献   

16.
This paper describes the synthesis and characterization of CuIn1 − xGaxSe2 − ySy (CIGSeS) thin-film solar cells prepared by rapid thermal processing (RTP). An efficiency of 12.78% has been achieved on ~ 2 µm thick absorber. Materials characterization of these films was done by SEM, EDS, XRD, and AES. J-V curves were obtained at different temperatures. It was found that the open circuit voltage increases as temperature decreases while the short circuit current stays constant. Dependence of the open circuit voltage and fill factor on temperature has been estimated. Bandgap value calculated from the intercept of the linear extrapolation was 1.1-1.2 eV. Capacitance-voltage analysis gave a carrier density of 4.0 × 1015 cm− 3.  相似文献   

17.
AlxZn1−xO (x = 0-0.5) thin films were prepared on quartz glass substrates by sol-gel technique. X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) were employed for microstructure characterization of these thin films. In films with up to 20 at.% Al incorporation, compound nano-crystal phase was observed while wurtzite structure disappeared. Zn3d electron binding energy and Zn LMM‘s chemical shift were both increased by more than 0.4 eV. Transmittance spectra revealed that these films possessed high transmittance in the visible region, and the end of UV absorption edge shifted to less than 300 nm when Al content exceeds 20 at.% due to quantum confinement effect.  相似文献   

18.
Ti-added amorphous SiOx films were sputter-deposited into stacks of Pt/SiOx/Pt and Cu/SiOx/Pt. Optimally prepared Pt/SiOx/Pt exhibits unipolar resistive switching over 102 cycles, resistance ratio ∼ 103, yet wide voltage distribution (2 ∼ 7 V for SET, 0.5 ∼ 1.5 V for RESET). Cu/SiOx/Pt exhibit similar endurance, resistance ratio up to 107, and SET and RESET voltages reduced to 1.8 ∼ 4.2 V and 0.5 ∼ 1 V, respectively. Cu diffusion into SiOx at the virgin state may play a role in resistive switching of Cu/SiOx/Pt stack besides of filament conduction. Ti-added amorphous SiOx films incorporating Cu electrode shows potential for resistive memory.  相似文献   

19.
Single-crystalline Ti1−xNbxO2 (x = 0.2) films of 40 nm thickness were deposited on SrTiO3 (100) substrates by the pulsed laser deposition (PLD) technique. X-ray diffraction measurement confirmed epitaxial growth of anatase (001) film. The resistivity of Ti1−xNbxO2 films with x ≥ 0.03 is 2-3 × 10− 4 Ω cm at room temperature. The carrier density of Ti1−xNbxO2, which is almost proportional to the Nb concentration, can be controlled in a range of 1 × 1019 to 2 × 1021 cm− 3. Optical measurements revealed that internal transmittance in the visible and near-infrared region for films with x = 0.03 was more than 97%. These results demonstrate that the presently developed anatase Ti1−xNbxO2 is one of the promising candidates for the practical TCOs.  相似文献   

20.
D.W Ma  H.M Lu  B.H Zhao  H.J Zhang 《Thin solid films》2004,461(2):250-255
Using the d.c. reactive magnetron sputtering method we have successfully deposited completely (002)-oriented ternary Zn1−xCdxO (0≤x≤0.6) alloy crystal films without Cd segregation on Si(111) substrates. X-Ray photoelectron spectroscopy measurements show that Cd/Zn ratios in the films are nearly consistent with those in the targets. The Zn and Cd exist only in oxidized states, no evidence of metallic Zn or Cd was observed. The O/(Cd+Zn) atomic ratios of the films are in the range of 0.89-0.98. Transmission electron microscopy measurements show that for the (002)-oriented films the grains are columnar structures with the c-axis perpendicular to the Si substrate. By post-annealing treatments in O2 ambient, the crystal quality of the Zn1−xCdxO films can be improved. For the sample of x=0.2, the optimal annealing temperature is 500 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号