首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X.H. Ji  H.Y. Yang 《Thin solid films》2007,515(11):4619-4623
We report the structural and optical properties of InN films on Si(111) prepared by ion-beam-assisted filtered cathodic vacuum arc technique. X-ray diffraction and Raman spectroscopy measurements indicated that all the InN films were hexagonal crystalline InN. The InN films deposited at substrate temperature of 475 °C exhibited highly (0001) preferred orientation and texturing (cratered) surface morphology. The oxygen incorporated in the InN films was segregated in the form of amorphous indium oxide or oxynitride phases at the grain boundaries. Photoluminescence emission of ∼ 1.15 eV was observed at room temperature from the InN films.  相似文献   

2.
J.X. Zhang  Y. Qu  A. Uddin  S.J. Chua 《Thin solid films》2007,515(10):4397-4400
GaN epitaxial layer was grown on Si(111) substrate by metalorganic chemical vapor deposition (MOCVD). The structure consists of 50 nm thick high-temperature grown AlN buffer layer, 150 nm thick AlGaN layer, 30 nm low-temperature grown AlN layer, 300 nm GaN layer, 50 nm AlGaN superlattice layer, followed by 100 nm GaN epitaxial layer. The low-temperature AlN interlayer and AlGaN superlattice layer were inserted as the defect-blocking layers in the MOCVD grown sample to eliminate the dislocations and improve the structural and optical properties of the GaN layer. The dislocation density at the top surface was decreased to ∼ 2.8 × 109/cm2. The optical quality was considerably improved. The photoluminescence emission at 3.42-3.45 eV is attributed to the recombination of free hole-to-donor electron. The observed 3.30 eV emission peak is assigned to be donor-acceptor transition with two longitudinal optical phonon side bands. The relationship of the peak energy and the temperature is discussed.  相似文献   

3.
We have grown vertically aligned ZnO nanorods and multipods by a seeded layer assisted vapor–liquid–solid (VLS) growth process using a muffle furnace. The effect of seed layer, substrate temperature and substrate material has been studied systematically for the growth of high quality aligned nanorods. The structural analysis on the aligned nanorods shows c-axis oriented aligned growth by homoepitaxy. High crystallinity and highly aligned ZnO nanorods are obtained for growth temperature of 850–900 °C. Depending on the thickness of the ZnO seed layer and local temperature on the substrate, some region of a substrate show ZnO tetrapod, hexapods and multipods, in addition to the vertically aligned nanorods. Raman scattering studies on the aligned nanorods show distinct mode at ∼438 cm−1, confirming the hexagonal wurtzite phase of the nanorods. Room temperature photoluminescence studies show strong near band edge emission at ∼378 nm for aligned nanorods, while the non-aligned nanorods show only defect-emission band at ∼500 nm. ZnO nanorods grown without the seed layer were found to be non-aligned and are of much inferior quality. Possible growth mechanism for the seeded layer grown aligned nanorods is discussed.  相似文献   

4.
A series of InN thin films was grown on sapphire substrates via plasma-assisted molecular beam epitaxy (PA-MBE) with different nitrogen plasma power. Various characterization techniques, including Hall, photoluminescence, Raman scattering and Rutherford backscattering, have been employed to study these InN films. Good crystalline wurtzite structures have been identified for all PA-MBE grown InN films on sapphire substrate, which have narrower XRD wurtzite (0002) peaks, showed c-axis Raman scattering allowed longitudinal optical (LO) modes of A1 and E1 plus E2 symmetry, and very weak backscattering forbidden transverse optical (TO) modes. The lower plasma power can lead to the lower carrier concentration, to have the InN film close to intrinsic material with the PL emission below 0.70 eV. With increasing the plasma power, high carrier concentration beyond 1 × 1020 cm− 3 can be obtained, keeping good crystalline perfection. Rutherford backscattering confirmed most of InN films keeping stoichiometrical In/N ratios and only with higher plasma power of 400 W leaded to obvious surface effect and interdiffusion between the substrate and InN film.  相似文献   

5.
We investigate the influence of a low-growth-rate InN buffer layer on structural and optical properties of wurtzite nanocrystalline InN films deposited on Si(111) substrates by reactive radio-frequency sputtering. The deposition conditions of the InN buffer layer were optimized in terms of morphological and structural quality, leading to films with surface root-mean-square roughness of ~ 1 nm under low-growth-rate conditions (60 nm/h). The use of the developed InN buffer layer improves the crystalline quality of the subsequent InN thick films deposited at high growth rate (180 nm/h), as confirmed by the narrowing of X-ray diffraction peaks and the increase of the average grain size of the layers. This improvement of the structural quality is further confirmed by Raman scattering spectroscopy measurements. Room temperature PL emission peaking at ~ 1.58 eV is observed for InN samples grown with the developed buffer layer. The crystal and optical quality obtained for InN films grown on Si(111) using the low-growth-rate InN buffer layer become comparable to high-quality InN films deposited directly on GaN templates by RF sputtering.  相似文献   

6.
We have investigated the doping transition of one-dimensional (1-D) doped-ZnO nanorods with Kelvin probe force microscopy (KPFM). Vertically aligned (undoped, As-doped, and undoped/As-doped homo-junction) ZnO nanorods were grown on Si (111) substrates without any catalyst by vapor phase transport. Individual ZnO nanorods are removed from the substrates and transferred onto thin Au films grown on Si substrates. The morphology and surface potentials of the nanorods were measured simultaneously by the KPFM. For the homo-junction nanorods with ~ 250 nm in diameter, the KPFM image shows localization of the doping transition along the nanorods. The measured Kelvin signal (surface potential) across the junction induces the work function difference between the undoped and the As-doped region of ~ 85 meV. Also, the work function of As-doped nanorods is ~ 95 meV higher than that of intrinsically undoped nanorods grown in similar conditions. These consistent results indicate that the KPFM is reliable to determine the localization of the doping transition in 1-D structures.  相似文献   

7.
Heteroepitaxial growth of metal-catalyst-free indium nitride (InN) nanorods on GaN/sapphire substrates by radio-frequency metal-organic molecular beam epitaxy (RF-MOMBE) system was investigated. We found that different N/In flow ratios together with the growth temperatures greatly influenced the surface morphology of InN nanorods and their structural properties. The InN nanorods have been characterized in detail using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM). Optical property was evaluated by photoluminescence (PL) measurements. At lower growth temperatures, InN nanorods were successfully grown. A pronounced two-dimensional growth mode was observed at higher growth temperature of 500 degrees C, and these films showed preferred orientation along the c-axis. XRD patterns and SEM images reveal that InN nanorods has high quality wurtzite structure with FWHM approaching 900 arcsec, and they have uniform diameters of about 150 nm and length of about 800 nm. Meanwhile, no metallic droplet was observed at the end of the nanostructured InN, and this is strong evidence that the nanorods are grown via the self-catalyst process. The PL peak at 0.8 eV is attributed to the quantum confinement and Moss-Burstein effects. These observations provide some valuable insights into the physical-chemical process for manufacturing InN nanorods devices.  相似文献   

8.
InGaN nanorod arrays have been grown by molecular beam epitaxy on bare and high-temperature AIN-buffered Si(111) substrates. It has been found that well vertically aligned InGaN nanorod arrays can be grown by using the high-temperature AIN buffer layer. On bare Si substrate, high-resolution transmission electron microscopy revealed an amorphous SiNx layer generated at the interface, and the thickness and flatness of the SiNx layer may affect the relative alignment of the nanorods with the substrate. By using the high-temperature AIN buffer layer, the interface quality was improved, and uniform InGaN nanorods could be grown. N-InGaN nanorods/p-Si heterostructure diodes were fabricated, which exhibit well rectifying behavior with a low turn on voltage of 1.2 eV and an on/off ratio of 7.2 at 2.5 V.  相似文献   

9.
Mn-doped zinc oxide (Mn:ZnO) nanorods were synthesized by incorporating manganese in aligned ZnO nanorods. For this, Mn was evaporated onto ZnO nanorods and the composite structure was subjected to rapid thermal annealing. The nanorods were preferentially oriented in (0 0 2) direction as indicated by the XRD measurement. Optical band gap was seen to decrease with increasing amount of Mn incorporation. XPS studies indicated that incorporated Mn was in Mn2+ and Mn4+ states. Mn2+ atomic concentration was found to be larger than Mn4+ concentration in all the samples. The Raman spectra of the Mn:ZnO nanorods indicated the presence of the characteristic peak at ∼438 cm−1 for high frequency branch of E2 mode of ZnO. The PL peak at ∼376 nm (∼3.29 eV) was ascribed to the band edge luminescence while the peak at ∼394 nm (∼3.15 eV) was assigned to the donor bound exciton (DoX) and free exciton transition related to Mn2+ states.  相似文献   

10.
We demonstrated the successful growth of catalyst-free InN nanorods on (0001) Al2O3 substrates using metal-organic chemical vapor deposition. Morphological evolution was significantly affected by growth temperature. At 710 degrees C, complete InN nanorods with typical diameters of 150 nm and length of approximately 3.5 microm were grown with hexagonal facets. theta-2theta X-ray diffraction measurement shows that (0002) InN nanorods grown on (0001) Al2O3 substrates were vertically aligned along c-axis. In addition, high resolution transmission electron microscopy indicates the spacing of the (0001) lattice planes is 0.28 nm, which is very close to that of bulk InN. The electron diffraction patterns also revealed that the InN nanorods are single crystalline with a growth direction along (0001) with (10-10) facets.  相似文献   

11.
In this work, we report the fabrication of high quality single-crystalline ZnO nanorod arrays which were grown on the silicon (Si) substrate using a microwave assisted solution method. The as grown nanorods were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photo-luminescence (PL) and magnetization measurements. The XRD results indicated that the ZnO nanorods are well oriented with the c-axis perpendicular to the substrate and have single phase nature with the wurtzite structure. FE-SEM results showed that the length and diameter of the well aligned rods is about ~ 1 μm and ~ 100 nm respectively, having aspect ratio of 20-30. Room-temperature PL spectrum of the as-grown ZnO nanorods reveals a near-band-edge (NBE) emission peak and defect induced green light emission. The green light emission band at ~ 583 nm might be attributed to surface oxygen vacancies or defects. Magnetization measurements show that the ZnO nanorods exhibit room temperature ferromagnetism which may result due to the presence of defects in the ZnO nanorods.  相似文献   

12.
The effect of the length of zinc oxide nanorods on their photoluminescence (PL) has been studied in the visible through UV spectral region. Hexagonally faceted columnar nanorods grown on (100) Si substrates have been shown to be aligned almost vertically. The chemistry of point defects in the nanorods depends on their position in the reactor during growth. The room-temperature PL spectrum of the nanorods shows narrow peaks due to stimulated free-exciton emission. The threshold optical pump power density for lasing in the longer ZnO nanorods is 8000 kW/cm2, and the laser radiation is directed predominantly along their axis.  相似文献   

13.
Indium nitride (InN) epilayers have been successfully grown by nitrogen-plasma-assisted molecular beam epitaxy (NPA-MBE) on Si (111) substrates using different buffer layers. Growth of a (0001)-oriented single crystalline wurtzite-InN layer was confirmed by high resolution X-ray diffraction (HRXRD). The Raman studies show the high crystalline quality and the wurtzite lattice structure of InN films on the Si substrate using different buffer layers and the InN/β-Si3N4 double buffer layer achieves minimum FWHM of E2 (high) mode. The energy gap of InN films was determined by optical absorption measurement and found to be in the range of ~ 0.73-0.78 eV with a direct band nature. It is found that a double-buffer technique (InN/β-Si3N4) insures improved crystallinity, smooth surface and good optical properties.  相似文献   

14.
ZnO nanorods are grown on seedless and ZnO seeded glass substrates using chemical solution method and their structural, morphological, optical and valence band studies have been carried out. On seedless substrate horizontal nanorods are observed whereas for the seeded substrates vertically aligned hollow and solid nanorods grows. X-ray diffraction analysis revealed the presence of tensile stress in the vertical nanorods. Blue shift has been observed in the band gap of the vertical nanorods as compared to the horizontal nanorods which is attributed to the presence of tensile stress in the vertically aligned nanorods. Photoluminescence spectra revealed the dominance of Zinc vacancies (V(Zn)) related defects in the nanorods and oxygen defects are found to be higher in the vertically aligned nanorods as compared to the horizontal nanorods. The difference between the Fermi level and valence band maxima for horizontal, hollow vertical and solid vertical nanorods are found to be approximately 0.56 eV, approximately 0.70 eV and approximately 0.92 eV respectively indicating the possibility of p-type of conduction in the nanorods which has been attributed to presence of V(Zn) defects in the ZnO nanorods.  相似文献   

15.
R.N. Gayen  R. Bhar 《Thin solid films》2010,518(6):1627-1636
Ni-doped zinc oxide (Ni:ZnO) nanorods were synthesized by incorporating nickel in vertically aligned ZnO nanorods. Ni was evaporated onto ZnO nanorods and the composite structure was subjected to rapid thermal annealing for dispersing Ni in ZnO nanorods. The optical band gap decreased with increasing amount of Ni incorporation. The origin of the photoluminescence peak at ∼ 400 nm was related to the defect levels introduced due to substitution of Ni2+ in the Zn2+ site with annealing. The Raman spectra indicated the presence of the characteristic peak at ∼ 436 cm− 1 which was identified as high frequency branch of E2 mode of ZnO. The Fourier Transformed Infrared spectra indicated the existence of the distinct characteristic absorption peak at 481 cm− 1 for ZnO stretching modes. Current-voltage characteristics indicated that the current changed linearly with voltage for both the doped and undoped samples.  相似文献   

16.
J. Ohta  T. Honke 《Thin solid films》2004,457(1):109-113
We have grown InN films on c-plane sapphire substrates by pulsed laser deposition (PLD) with a radio frequency nitrogen radical source for the first time and investigated the effect of the substrate surface nitridation on the structural and electrical properties of InN films with reflection high energy electron diffraction (RHEED), atomic force microscope, the Hall effect measurements and high-resolution X-ray diffraction (HRXRD). RHEED and HRXRD characterizations revealed that high-quality InN grows epitaxially on sapphire by PLD and its epitaxial relationship is InN (0 0 0 1)∣∣sapphire (0 0 0 1) and InN [2 -1 -1 0]∣∣sapphire [1 0 -1 0]. The InN crystalline quality and the electron mobility are improved by the substrate nitridation process. The area of the pits at the InN surface is reduced by the substrate nitridation process probably due to the reduction in the interface energy between InN and the substrate. The full width at half maximum of the -1 -1 2 4 X-ray rocking curve for InN grown by the present technique without using any buffer layers was as small as 34.8 arcmin. These results indicate that the present technique is promising for the growth of the high-quality InN films.  相似文献   

17.
We have investigated the optical properties of vertical GaN nanorods with diameters of 150 nm grown on (111) Si substrates by radio-frequency plasma-assisted molecular-beam epitaxy followed by Mn ion implantation and annealing. The GaN nanorods are fully relaxed and have a very good crystal quality characterized by extremely strong and narrow photoluminescence excitonic lines near 3.47 eV. For GaMnN nanorods, Arrhenius plots of the intensities of the Mn acceptor give a thermal activation energy of Δ=350 meV, indicating that the thermal quenching of the Mn-related PL peak is due to the dissociation of an acceptor-bound hole from the temperature-dependent PL spectra. This suggests that the Mn-bound holes in GaN nanorods exhibit the impurity states predicted by the hydrogen model.  相似文献   

18.
We investigate molecular beam epitaxial overgrowth of Si template layers produced by different approaches on single-crystalline oxide grown on Si(111). Three approaches based on modified solid-phase epitaxy were found to be suitable for the subsequent Si epitaxial overgrowth. The crystalline quality and interface properties of single-crystalline silicon on single-crystalline oxide grown on Si(111) make the obtained structures suitable for silicon-on-insulator applications. First measurements of electrical properties of p-type samples indicate good electrical properties of the top Si layer. Supplemental investigations demonstrate that Si layers with thickness in the range of 10 nm remain stable during thermal annealing up to 900 °C in an ultra-high vacuum.  相似文献   

19.
Polycrystalline indium phosphide films were successfully deposited on glass and Si substrates by co-evaporating indium and phosphorus from appropriate crucibles. Microstructural studies indicated the average crystallite size to be ∼78 nm. X-ray diffraction pattern indicated reflections from (111), (220) and (311) planes only. The surface roughness of the films was estimated to be 30 nm and the band gap as determined from the transmittance versus wavelength traces was found to be ∼1.42 eV. The PL spectrum measured at 300 K was dominated by a strong peak located ∼1.41 eV. The intensity of this peak increased significantly when recorded at lower (10 K) temperatures and shifted towards higher energy (∼1.54 eV). XPS studies indicated two peaks ∼444.5 eV and ∼451.9 eV, corresponding to peaks of 3d5/2 and 3d3/2 of In 3d core while the P 2p peak at ∼128.8 eV was assigned to only P in InP. Characteristics Raman peaks for InP at ∼303 cm−1 (TO) and ∼342 cm−1 (LO) were observed.  相似文献   

20.
GaN films with different thicknesses were grown on Si(111) substrates by Plasma—Assisted Molecular Beam Epitaxy (PA-MBE). The optical properties of the films were investigated using spectrophotometric measurements of the reflectance in the wavelength range 200–3,300 nm. With increasing film thickness, the refractive index (n) increased slightly, while the optical energy gap (Eg) changed with no specific trend. The structural properties of the grown films were studied at (002) reflections using two types of rocking curve measurements; normal rocking curve (ω-scan) and triple axis rocking curve (ω/2θ-scan). The Full Width at Half Maximum (FWHM) of rocking curve decreased with increasing film thickness. Hall effect measurements showed that all the samples were n-type with carrier concentrations decreasing from 8.025 × 1018 to 5.65 × 1017 cm−3, and mobility increasing from 14 to 110 cm2 V−1 s−1 as increasing the film thickness from 590 to 1,420 nm, respectively. Photoluminescence (PL) spectra for the grown GaN films with different thicknesses were measured at room temperature. PL spectra for all the samples exhibited band edge (BE) emissions at peak energies of 3.24 eV, with peak intensities increased with increasing the film thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号