首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we report the results of the study of thermal treatment effects on the electrical and optical properties of silver-based indium tin oxide/metal/indium tin oxide (IMI) multilayer films. Heat treatment conditions such as temperature and gaseous atmosphere was varied to obtain better electrical and optical properties. We obtained improved electrical properties and observed considerable shift in the transmittance curves after heat treatment. Several analytical tools such as X-ray diffraction, spectroscopic ellipsometer and spectrophotometer were used to explore the causes of the changes in electrical and optical properties. The sheet resistance of the structure was severely influenced by deposition conditions of the indium tin oxide (ITO) layer at the top. Moreover, the shift of optical transmittance could be explained on the basis of the change in refractive indices of ITO layers during heat treatment. The properties of Ag-alloy-based IMI films were compared with those of pure Ag-based ones. Some defects originating from Ag layer corrosion were observed on the surface of ITO-pure Ag–ITO structures, however, their number decreased significantly in the cases of Ag-alloys containing Pd, Au and Cu, though the resistivity values of Ag-alloys were slightly higher than those of silver. Atomic force microscopy measurement results revealed that the surface of the IMI multilayer was so smooth that it meets the required qualifications as the bottom electrode of organic light emitting diodes.  相似文献   

2.
Effect of thermal annealing in different ambients on the structural, electrical and optical properties of the sol-gel derived ZnO thin films are studied. XRD results show that the annealed ZnO films with wurtzite structure are randomly oriented. Crystallite size, carrier concentration, resistivity and mobility are found to be dependent on the annealing temperature. The change in carrier concentration is discussed with respect to the removal of adsorbed oxygen from the grain boundaries. The highest carrier concentration and lowest resistivity are 8 × 1018 cm−3 and 2.25 × 10−1 Ω cm, respectively, for the film annealed at 500 °C in vacuum. The annealed films are highly transparent with average transmission exceeding 80% in the wavelength region of 400-800 nm. In all three ambients, the optical band gap value does not change much below 500 °C temperature while above this temperature band gap value decreases for nitrogen and air and increases for vacuum.  相似文献   

3.
Effects of the annealing treatment on properties of ZnO thin films prepared on silica glass substrates by the ultrasonic spraying pyrolysis process were studied. Zinc acetate dihydrate and methanol were used as a starting material and a solvent, respectively. For ZnO thin films untreated with annealing, the preferred grain growth along the (0 0 2) plane was observed. The electrical resistivity and the direct band gap values of these films decreased with increasing the deposit temperature. By applying the annealing treatment in a reducing atmosphere, while the degree of the preferred (0 0 2) orientation of films decreased, the electrical conductivity of films was improved. When compared with the resistivity values of films without the annealing treatment, the values of films annealed in the reducing atmosphere were decreased by about two orders of magnitude. The lowest resistivity value was 1.62×10−1 Ω cm, which was obtained in the film annealed at 500 °C in nitrogen with 5% hydrogen. The optical transmittances of the films were higher than 80% regardless of the application of the annealing treatment in a reducing atmosphere. The direct band gap values of films annealed in a reducing atmosphere were approximately 3.27 eV.  相似文献   

4.
Ge20Te80 films were deposited by thermal evaporation technique onto chemically cleaned glass substrates kept at different substrate temperatures (Tsub=203, 233 and 273 K). The optical data indicated that the width of the localized states tails (Ee) increases while the optical gap (Eo) decreases with increasing the substrate and annealing temperature of the investigated films. From the electrical measurements, the activation energy for conduction and the density of localized states at the Fermi energy, N(EF), were obtained. The effects of the substrate and annealing temperature on the width of localized states tails and on the density of localized states at the Fermi level have enhanced each other. The changes in the optical and electrical properties are correlated with the amorphous-crystalline transformations.  相似文献   

5.
The effect of annealing on structural, electrical, and optical properties of Ga-doped ZnO (GZO) films prepared by RF magnetron sputtering was investigated in air and nitrogen. GZO films are polycrystalline with a preferred 002 orientation. The resistivities of annealed films are larger than the as-deposited. The transmittance in the near IR region increases greatly and the optical band gap decreases after annealing. The photoluminescence spectra is composed of a near band edge emission and several deep level emissions (DLE) which are dominated by a blue emission. After annealing, these DLEs are enhanced evidently.  相似文献   

6.
Zinc oxide transparent conductive thin films were prepared using the pulsed laser deposition technique onto Corning glass substrates and the dependences of their optical and electrical properties on the thickness and the growth temperature were investigated. As shown, the films present 90% average transmittance, their energy gap position depending on the film thickness and the growth temperature. An additional absorption band was also observed near 3.44 eV, the position of its maximum also depending on the growth parameters. Finally, the electrical properties of the films were found to be affected mainly by the growth temperature and less by the thickness.  相似文献   

7.
Zinc Oxide films were deposited on quartz substrates by reactive rf magnetron sputtering of zinc target. The effect of substrate temperature on the crystallinity and band edge luminescence has been studied. The films deposited at 300 °C exhibited the strongest c-axis orientation. AFM and Raman studies indicated that the films deposited at 600 °C possess better overall crystallinity with reduction of optically active defects, leading to strong and narrow PL emission.  相似文献   

8.
In this paper a ZnS/Ag/ZnS (ZAZ) nano-multilayer structure is designed theoretically and optimum thicknesses of ZnS and Ag layers are calculated at 35 and 17 nm, respectively. Several conductive transparent ZAZ nano-multilayer films are deposited on a glass substrate at room temperature by thermal evaporation method. Changes in the electrical, structural, and optical properties of samples are investigated with respect to annealing in air at different temperatures. High-quality nano-multilayer films with the sheet resistance of 8 Ω/sq and the optical transmittance of 83% at 200 °C annealing temperature are obtained. The figure of merit is applied on the ZAZ films and their performance as transparent conductive electrodes are determined.  相似文献   

9.
Zinc oxide/indium/zinc oxide multilayer structures have been obtained on glass substrates by magnetron sputtering. The effects of indium thickness on optical and electrical properties of the multilayer structures are investigated. Compared to a single zinc oxide layer, the carrier concentration increases from 8 × 1018 cm−3 to 1.8 × 1020 cm−3 and Hall mobility decreases from 10 cm2/v s to 2 cm2/v s for the multilayer structure at 8 nm of indium thickness. With the increase of indium thickness, the transmittance decreases and optical band gap shifts to lower energy in multilayer structures. Results are understood based on Schottky theory, interface scattering mechanism and the absorption of indium layer.  相似文献   

10.
In this work, indium zinc oxide (IZO) films have been deposited on a polyethylene terephthalate substrate coated with an SiOx film. Based on a comparative investigation of an IZO monolayer and an IZO/SiOx multilayer, it is shown that oxygen has a great effect on the electrical properties of the thin films. A mechanism is described to explain the influence of the introduced SiOx buffer layer. It is considered that an interfacial layer has come into being at the interface between the SiOx layer and IZO layer, and the properties of this layer have been evaluated. Moreover, the electrical properties of the IZO/SiOx multilayer have been successfully improved by controlling the oxygen content of the interfacial layer.  相似文献   

11.
The Mn-doped ZnO (Zn1 − xMnxO) thin films with manganese compositions in the range of 0-8 at.% were deposited by radio-frequency (RF) magnetron sputtering on quartz glass substrates at room temperature (RT). The influence of Mn concentration on the structural, electrical and optical properties of Zn1 − xMnxO films has been investigated. X-ray diffraction (XRD) measurements reveal that all the films are single phase and have wurtzite structure with (002) c-axis orientation. The chemical states of Mn have been identified as the divalent state of Mn2+ ions in ZnO lattice. As the content of Mn increases, the c-lattice constant and the optical band gap of the films increase while the crystalline quality deteriorates gradually. Hall-effect measurements reveal that all the films are n-type and the conductivity of the films has a severe degradation with Mn content. It is also found that the intensity of RT photoluminescence spectra (PL) is suppressed and saturates with Mn doping.  相似文献   

12.
Influence of thermal annealing on electrical properties of GZO films has been studied by means of Hall effect measurements and optical characterization based on Drude model analysis for transmission and reflection spectra. Electrical resistivity increased with increasing annealing temperature. Changes of electrical properties were compared between air and N2 gas atmosphere. Thermal stability in the air was worse compared to the N2 gas atmosphere. Annealing at rather high temperature caused decrease in the Hall mobility and increase in optical mobility. The difference between the Hall mobility and the optical mobility was attributed to carrier scattering at grain boundaries. Three kinds of deposition method, ion plating using DC arc discharge, DC magnetron sputtering, and RF power superimposed DC magnetron sputtering were compared in terms of the thermal stability.  相似文献   

13.
A series of ZnO films of different thickness have been deposited on glass substrates using sol-gel technique by varying the number of spin coatings and the effect of film thickness on the structural, electrical and optical properties have been investigated. The XRD results indicate that the full width at half maximum (FWHM) of the (0 0 2) diffraction peak and the strain along c-axis are decreased as the film is grown up to a thickness of 300 nm. Above 300 nm, the strain again becomes appreciable. The surface morphology shows that the grains become more uniform and bigger in size as the film thickness increases. Electrical result shows that although ZnO film with thickness of around 260 nm has the highest resistivity but is better for current conduction. The excitonic nature in the absorption spectrum becomes prominent for a film with thickness of around 260 nm. The band gap increases and then decreases as the film grows thicker.  相似文献   

14.
Multilayer coatings consisting of thin silver layer sandwiched between layers of Al-doped ZnO (AZO) were prepared by electron beam evaporation. The optical and electrical performances of AZO/Ag/AZO multilayers were investigated. Optimization of the multilayer coatings resulted with low sheet resistance of 7.7 Ω/sq and transmittance of 85%. The influence of thickness of each layer on the optic and electrical performance was analyzed. The sheet resistance of the multilayer was reduced to 5.34 Ω/sq. and the average transmittance was improved to 90% by the thermal treatment. The coatings had satisfactory properties of low resistance, high transmittance and thermal stability.  相似文献   

15.
Mn1.85Co0.3Ni0.85O4 (MCN) thin films were prepared on Al2O3 substrates by chemical solution deposition method at different annealing temperature (650, 700, 750 and 800 °C). Effects of annealing temperature on microstructure and electrical properties of MCN thin films were investigated. The MCN thin film annealed at 750 °C is of good crystallization and compact surface. It shows lower resistance (4.8 MΩ) and higher sensitivity (3720.6 K) than those of other prepared films. It also has small aging coefficient (3.7%) after aging at 150 °C for 360 h. The advantages of good properties make MCN thin film very promising for integrated devices.  相似文献   

16.
CuInSe2 (CIS) thin films were prepared by ion beam sputtering deposition of copper layer, indium layer and selenium layer on BK7 glass substrates followed by annealing at different temperatures for 1 h in the same vacuum chamber. The influence of annealing temperature (100-400 °C) on the structural, optical and electrical properties of CIS thin films was investigated. X-ray diffraction (XRD) analysis revealed that CIS thin films exhibit chalcopyrite phase and preferential (112) orientation when the annealing temperature is over 300 °C. Both XRD and Raman show that the crystalline quality of CIS thin film and the grain size increase with increasing annealing temperature. The reduction of the stoichiometry deviation during the deposition of CIS thin films is achieved and the elemental composition of Cu, In and Se in the sample annealed at 400 °C is very near to the stoichiometric ratio of 1:1:2. This sample also has an optical energy band gap of about 1.05 eV, a high absorption coefficient of 105 cm−1 and a resistivity of about 0.01 Ω cm.  相似文献   

17.
A systematic study of the influence of alumina (Al2O3) doping on the optical, electrical, and structural characteristics of sputtered ZnO thin films is reported in this study. The ZnO thin films were prepared on 1737F Corning glass substrates by R.F. magnetron sputtering from a ZnO target mixed with Al2O3 of 0-4 wt.%. X-ray diffraction (XRD) analysis demonstrates that the ZnO thin films with Al2O3 of 0-4 wt.% have a highly (002) preferred orientation with only one intense diffraction peak with a full width at half maximum (FWHM) less than 0.5°. The electrical properties of the Al2O3-doped ZnO thin films appear to be strongly dependent on the Al2O3 concentration. The resistivity of the films decreases from 74 Ω·cm to 2.2 × 10− 3 Ω·cm as the Al2O3 content increases from 0 to 4 wt.%. The optical transmittance of the Al2O3-doped ZnO thin films is studied as a function of wavelength in the range 200-800 nm. It exhibits high transparency in the visible-NIR wavelength region with some interference fringes and sharp ultraviolet absorption edges. The optical bandgap of the Al2O3-doped ZnO thin films show a short-wavelength shift with increasing of Al2O3 content.  相似文献   

18.
The goal of this work is to investigate the morphology, electrical and optical properties of undoped ZnO (i-ZnO) thin layers deposited on Si substrates with (100) and (111) orientations. Plasma enhanced metalorganic chemical vapor deposition (PEMOCVD) was used for the deposition of i-ZnO layers at different temperatures. Atomic force microscopy (AFM), ellipsometry and four-probe method were used for the analysis. It is found that substrate orientation and growth temperature determine the morphological (grains size, surface roughness) as well as electrical properties of ZnO films. It is shown that the refractive index value depends on the surface morphology. It is concluded that properties of i-ZnO layers deposited on different Si substrates at different conditions exhibit some trends and peculiarities, which have to be taken into account for the processing of heterojunction solar cells by the PEMOCVD method.  相似文献   

19.
Nickel oxide (NiO) thin films were prepared on glass substrates at various bias voltages using dc reactive magnetron sputtering technique. The influence of substrate bias voltage on structural, optical and electrical properties was systematically investigated using X-ray diffraction (XRD), SEM, EDS, spectrophotometer and Hall effect studies. The NiO films are crystalline with preferential growth along (2 0 0) plane. The NiO films exhibit optical transmittance of 55% and direct band gap of 3.78 eV at the substrate bias voltage of −75 V. The electrical resistivity decreases as substrate bias voltage increases from 0 to −75 V thereafter it was slightly increased.  相似文献   

20.
A series of ZnO/Cu/ZnO multilayer films has been fabricated from zinc and copper metallic targets by simultaneous RF and DC magnetron sputtering. Numerical simulation of the optical properties of the multilayer films has been carried out in order to guide the experimental work. The influences of the ZnO and Cu layer thicknesses, and of O2/Ar ratio on the photoelectric and structural properties of the films were investigated. The optical and electrical properties of the multilayers were studied by optical spectrometry and four point probe measurements, respectively. The structural properties were investigated using X-ray diffraction. The performance of the multilayers as transparent conducting coatings was compared using a figure of merit. In experiments, the thickness of the ZnO layers was varied between 4 and 70 nm and those of Cu were between 8 and 37 nm. The O2/Ar ratios range from 1:5 to 2:1. Low sheet resistance and high transmittance were obtained when the film was prepared using an O2/Ar ratio of 1:4 and a thickness of ZnO (60 nm)/Cu (15 nm)/ZnO (60 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号