共查询到14条相似文献,搜索用时 78 毫秒
2.
3.
针对一类时变参数化非线性系统的控制问题进行深入研究,提出一种新的迭代神经网络估计器,并证明了其逼近引理,实现了对时变不确定性的逼近.在用迭代神经网络对时变不确定性进行估计的同时,以Lyapunov稳定性理论为基础,综合运用Backstepping和自适应控制技术,设计了自适应迭代学习控制器,并进行了稳定性分析,得到了稳定性定理,解决了这类时变非线性系统的控制问题.最后的仿真实验验证了所提出设计方法的正确性. 相似文献
4.
针对一类单输入单输出不确定非线性重复跟踪系统,提出一种基于完全未知高频反馈增益的自适应迭代学习控制,与普通迭代学习控制需要复习增益稳定性前提条不同,自适应迭代学习控制通过不断修改Nussbaum形式的高频学习增益达到收敛,经证明当迭代次数i→∞时,重复跟踪误差可一致收敛到任意小界δ。仿真结果表明了该控制方法的有效性。 相似文献
5.
针对一类单输入单输出不确定非线性重复跟踪系统,提出一种基于完全未知高频反馈增益的自适应迭代学习控制.与普通迭代学习控制需要学习增益稳定性前提条件不同,自适应迭代学习控制通过不断修改Nussbaum形式的高频学习增益达到收敛.经证明当迭代次数i→∞时,重复跟踪误差可一致收敛到任意小界δ.仿真结果表明了该控制方法的有效性. 相似文献
6.
针对控制方向未知的、存在周期性非参数不确定性的一类非线性系统,给出零误差跟踪的重复控制方法.引入Nussbaum函数设计自适应重复控制器,参数估计修正律采用完全饱和形式,将参数估计囿于预先给定的范围内.分析表明,闭环系统中所有信号本身有界,且跟踪误差本身趋于零.数值仿真结果验证了算法的有效性. 相似文献
7.
本文对于一类含有未知控制方向及时滞的非线性参数化系统,设计了自适应迭代学习控制算法.在设计控制算法过程中采用了参数分离技术和信号置换思想来处理系统中出现的时滞项,Nussbaum增益技术解决未知控制方向等问题.为了对系统中出现的未知时变参数和时不变参数进行估计,分别设计了差分及微分参数学习律.然后通过构造的Lyapunov-Krasovskii复合能量函数给出了系统跟踪误差渐近收敛及闭环系统中所有信号有界的条件.最后通过一个仿真例子说明了控制器设计的有效性. 相似文献
8.
9.
一类非线性系统的自适应神经网络控制 总被引:4,自引:0,他引:4
针对一类具有非仿射函数和下三角结构的、受干扰未知的非线性系统,提出一种新的自适应神经网络控制方法.它是严格反馈不确定系统和纯反馈系统的更一般化表达.在Backstepping设计思想基础上,证明了闭环信号的半全局最终一致有界性,并很好地处理了控制方向和控制奇异问题.通过仿真验证了该方法的有效性. 相似文献
10.
基于未知控制增益的非线性系统自适应迭代反馈控制 总被引:2,自引:0,他引:2
针对一类单输入单输出不确定非线性重复跟踪系统, 提出一种基于完全未知控制增益的自适应迭代反馈控制. 与普通迭代学习控制需要学习增益稳定性前提条件不同, 所提自适应迭代反馈控制律通过不断修改Nuss baum形式的反馈增益达到收敛. 证明当迭代次数i→δ时, 重复跟踪误差可一致收敛到任意小界δ. 仿真显示了所提控制方法的有效性. 相似文献
11.
This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method. 相似文献
12.
13.
14.
In this paper, we investigate the adaptive consensus control for a class of nonlinear systems with different unknown control directions where communications among the agents are represented by a directed graph. Based on the backstepping technique, a fully distributed adaptive control approach is proposed without using global information of the topology. Meanwhile, a novel Nussbaum-type function is proposed to address the consensus control with unknown control directions. It is proved that boundedness of all closed-loop signals and asymptotic consensus tracking for all the agents' outputs are ensured. In simulation studies, a numerical example is illustrated to show the effectiveness of the control scheme. 相似文献