首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
2.
未知时变时滞非线性参数化系统自适应迭代学习控制   总被引:1,自引:3,他引:1  
针对含有未知时变参数和时变时滞的非线性参数化系统,提出了一种新的自适应迭代学习控制方法.该方法将参数分离技术与信号置换思想相结合,可以处理含有时变参数和时滞相关不确定性的非线性系统.设计了一种自适应控制策略,使跟踪误差的平方在一个有限区间上的积分渐近收敛于零.通过构造Lyapunov-Krasovskii型复合能量函数,给出了闭环系统收敛的一个充分条件.给出两个仿真例子验证了控制方法的有效性.  相似文献   

3.
李静  胡云安 《控制与决策》2012,27(7):1015-1020
针对一类时变参数化非线性系统的控制问题进行深入研究,提出一种新的迭代神经网络估计器,并证明了其逼近引理,实现了对时变不确定性的逼近.在用迭代神经网络对时变不确定性进行估计的同时,以Lyapunov稳定性理论为基础,综合运用Backstepping和自适应控制技术,设计了自适应迭代学习控制器,并进行了稳定性分析,得到了稳定性定理,解决了这类时变非线性系统的控制问题.最后的仿真实验验证了所提出设计方法的正确性.  相似文献   

4.
陈华东  蒋平 《控制与决策》2002,17(11):715-718
针对一类单输入单输出不确定非线性重复跟踪系统,提出一种基于完全未知高频反馈增益的自适应迭代学习控制,与普通迭代学习控制需要复习增益稳定性前提条不同,自适应迭代学习控制通过不断修改Nussbaum形式的高频学习增益达到收敛,经证明当迭代次数i→∞时,重复跟踪误差可一致收敛到任意小界δ。仿真结果表明了该控制方法的有效性。  相似文献   

5.
陈华东  蒋平 《控制与决策》2002,17(Z1):715-718
针对一类单输入单输出不确定非线性重复跟踪系统,提出一种基于完全未知高频反馈增益的自适应迭代学习控制.与普通迭代学习控制需要学习增益稳定性前提条件不同,自适应迭代学习控制通过不断修改Nussbaum形式的高频学习增益达到收敛.经证明当迭代次数i→∞时,重复跟踪误差可一致收敛到任意小界δ.仿真结果表明了该控制方法的有效性.  相似文献   

6.
针对控制方向未知的、存在周期性非参数不确定性的一类非线性系统,给出零误差跟踪的重复控制方法.引入Nussbaum函数设计自适应重复控制器,参数估计修正律采用完全饱和形式,将参数估计囿于预先给定的范围内.分析表明,闭环系统中所有信号本身有界,且跟踪误差本身趋于零.数值仿真结果验证了算法的有效性.  相似文献   

7.
本文对于一类含有未知控制方向及时滞的非线性参数化系统,设计了自适应迭代学习控制算法.在设计控制算法过程中采用了参数分离技术和信号置换思想来处理系统中出现的时滞项,Nussbaum增益技术解决未知控制方向等问题.为了对系统中出现的未知时变参数和时不变参数进行估计,分别设计了差分及微分参数学习律.然后通过构造的Lyapunov-Krasovskii复合能量函数给出了系统跟踪误差渐近收敛及闭环系统中所有信号有界的条件.最后通过一个仿真例子说明了控制器设计的有效性.  相似文献   

8.
非线性时变参数不确定系统的自适应迭代学习控制   总被引:3,自引:1,他引:3  
利用离散时间轴与迭代轴之间的相似性, 提出了一种新的离散时间自适应迭代学习控制 (AILC) 方法来处理带有时变参数不确定性的非线性系统. 与自适应控制相类似, 所提出的 AILC 是基于投影算法的, 因此学习增益可以沿学习轴迭代地调节. 在随机初始状态和参考轨迹迭代变化的条件下, 所提出的 AILC 仍可沿迭代学习轴渐近地实现有限时间区间上的逐点收敛性.  相似文献   

9.
一类非线性系统的自适应神经网络控制   总被引:4,自引:0,他引:4  
针对一类具有非仿射函数和下三角结构的、受干扰未知的非线性系统,提出一种新的自适应神经网络控制方法.它是严格反馈不确定系统和纯反馈系统的更一般化表达.在Backstepping设计思想基础上,证明了闭环信号的半全局最终一致有界性,并很好地处理了控制方向和控制奇异问题.通过仿真验证了该方法的有效性.  相似文献   

10.
基于未知控制增益的非线性系统自适应迭代反馈控制   总被引:2,自引:0,他引:2  
针对一类单输入单输出不确定非线性重复跟踪系统, 提出一种基于完全未知控制增益的自适应迭代反馈控制. 与普通迭代学习控制需要学习增益稳定性前提条件不同, 所提自适应迭代反馈控制律通过不断修改Nuss baum形式的反馈增益达到收敛. 证明当迭代次数i→δ时, 重复跟踪误差可一致收敛到任意小界δ. 仿真显示了所提控制方法的有效性.  相似文献   

11.
This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method.  相似文献   

12.
一类未知非线性系统的智能迭代学习控制   总被引:6,自引:0,他引:6       下载免费PDF全文
从自适应的角度设计迭代学习控制,将神经网络引入迭代学习控制中。学习控制与自适应控制相结合,使得对网络权值的学习和跟踪控制同时进行,克服 了经典迭代学习控制的一些缺陷。基于Lyapunov直接方法,证明了整个控制系统的稳定并实现了任意精度的跟踪。实例仿真结果说明了算法 的有效性及其所具有的优点。  相似文献   

13.
针对一类带有有界控制系数和有界扰动的时变参数严反馈非线性系统, 将Nussbaum函数增益及光滑投影算法与自适应逆推设计工具相结合, 提出一种自适应鲁棒非线性控制方案. 在此方案中无需知道控制系数的符号, 以及时变参数和扰动的界. 借助Lyapunov函数及相关引理证明了所设计的自适应鲁棒非线性控制器能保证闭环系统中的所有信号全局一致有界. 可以通过恰当地选取设计参数, 保证系统具有任意指定的控制性能. 仿真研究证明了所提出算法的可行性和有效性.  相似文献   

14.
In this paper, we investigate the adaptive consensus control for a class of nonlinear systems with different unknown control directions where communications among the agents are represented by a directed graph. Based on the backstepping technique, a fully distributed adaptive control approach is proposed without using global information of the topology. Meanwhile, a novel Nussbaum-type function is proposed to address the consensus control with unknown control directions. It is proved that boundedness of all closed-loop signals and asymptotic consensus tracking for all the agents' outputs are ensured. In simulation studies, a numerical example is illustrated to show the effectiveness of the control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号