首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The perpendicular anisotropic magnetic properties of in-situ deposited FePt/Pt/Cr trilayer films were elucidated as functions of the deposition temperature and the sputtering rate of the FePt magnetic layer. Ordered L10 FePt thin films with perpendicular anisotropy and a (001) texture can be developed at a temperature as low as 300 °C with the sputtering of a FePt layer at a low rate. The larger Pt(001)[100] lattice induced an expansion of the FePt a- and b-axis, leading to the contraction of the FePt c-axis, enabling the epitaxial growth of the L10 FePt(001) texture to occur. A low rate of sputtering of the FePt thin film promotes the formation of the magnetically hard FePt(001) texture on the surface of the Pt(001) buffer layer at low temperature, while the high sputtering rate of FePt layer suppresses the phase transformation.  相似文献   

2.
Epitaxial chromium oxide (α-Cr2O3) films grown by atomic layer deposition at 375 °C from CrO2Cl2 and CH3OH on (1 1¯ 0 2) oriented α-Al2O3 have been studied by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD) and X-ray reflection (XRR). The thickness of the films ranged from 10 to 310 nm, and the average growth rate was 0.1 nm per deposition cycle. According to the XRD analysis, the orientation relationship in thinner films was (1 1¯ 0 2)[1 1 0]Cr2O3 || (1 1¯ 0 2)[1 1 0]Al2O3. Confirmed by the RHEED and XRD analyses, (1¯ 1 0 2) became the preferred growth plane at the thicknesses above 40 nm. This change has been interpreted as the appearance of an asymmetric rhombohedral twin with the orientation relationship between the layers (1¯ 1 0 2)[1 1 0]top || (1 1¯ 0 2)[1 1 0]bottom and (1¯ 1 0 2)[1 1¯ 1]top || (1 1¯ 0 2)[1¯ 1 1]bottom. The match of the anion and cation sublattices of both layers was characterized in terms of the structural model of the twin interface.  相似文献   

3.
The influence of SiO2 layer thickness of (Fe52Pt48)88Cu12:SiO2 multilayer nanocomposite films on their structural and magnetic properties were investigated. The films were deposited on (001) textured FePt films, and then annealed at 873 K. The crystalline texture of (Fe52Pt48)88Cu12:SiO2 films changes drastically with respect to the thickness of the SiO2 layers. In the film with 50-Å thick SiO2 layers, the (111) peak was strong although the (001) orientation is dominant, and self-organized spherical FePtCu particles were formed in the SiO2 matrix. However, in the film with 19-Å thick SiO2 layers, flat FePt grains with perfect (001) orientation were obtained. In addition, twins with different crystalline orientations were seen in the above films with different thicknesses of the SiO2 layers. Accordingly, different perpendicular hysteresis loops were obtained.  相似文献   

4.
ZnO films with c-axis (0002) orientation have been grown on SiO2/Si substrates with an Al2O3 buffer layer by radio frequency magnetron sputtering. Crystalline structures of the films were investigated by X-ray diffraction, atomic force microscopy and scanning electron microscopy. The center frequency of the surface acoustic wave (SAW) device with a 4.8 μm thick Al2O3 buffer layer was measured to be about 408 MHz, which was much higher than that (265 MHz) of ZnO/SiO2/Si structure and approaches that (435 MHz) of ZnO/sapphire. It is a possible way as an alternative for the sapphire substrate for the high frequency SAW device applications, and is also useful to integrate the semiconductor and high frequency SAW devices on the same Si substrate.  相似文献   

5.
The sintering of Y3Al5O12 to full density and translucency using either SiO2 or MgO as a dopant is described. The resulting ceramics have a regular microstructures and low optical absorption coefficients.  相似文献   

6.
In this study, sputtered 50, 70 and 90 nm thick Al2O3 thin films were evaluated as a passivation layer in the process of InGaN-based blue as LEDs (Light-Emitting Diodes) in order to improve the brightness of LED lamps. For packaged LED lamps, lamps with Al2O3 passivation layer had higher brightness than ones with SiO2 passivation layer, and LED lamps with 90-nm Al2O3 passivation layer were the brightest among four kinds of lamps. Although lamps with Al2O3 passivation layer had a bias voltage 0.25 V at 20 mA forward current higher the lamps built with SiO2 passivation layer, their brightness was improved about 13.6% higher than the conventional LEDs with no change in emitting wavelength.  相似文献   

7.
A thin-film structure comprising Al2O3/Al-rich Al2O3/SiO2 was fabricated on Si substrate. We used radio-frequency magnetron co-sputtering with Al metal plates set on an Al2O3 target to fabricate the Al-rich Al2O3 thin film, which is used as a charge storage layer for nonvolatile Al2O3 memory. We investigated the charge trapping characteristics of the film. When the applied voltage between the gate and the substrate is increased, the hysteresis window of capacitance-voltage (C-V) characteristics becomes larger, which is caused by the charge trapping in the film. For a fabricated Al-O capacitor structure, we clarified experimentally that the maximum capacitance in the C-V hysteresis agrees well with the series capacitance of insulators and that the minimum capacitance agrees well with the series capacitance of the semiconductor depletion layer and stacked insulator. When the Al content in the Al-rich Al2O3 is increased, a large charge trap density is obtained. When the Al content in the Al-O is changed from 40 to 58%, the charge trap density increases from 0 to 18 × 1018 cm− 3, which is 2.6 times larger than that of the trap memory using SiN as the charge storage layer. The device structure would be promising for low-cost nonvolatile memory.  相似文献   

8.
The glass formation abilities of various compositions in SrO–TiO2–Al2O3–SiO2, SrO–TiO2–B2O3–SiO2, SrO–TiO2–Al2O3–B2O3, and SrO–TiO2–Al2O3–SiO2–B2O3 systems were studied. Many new compositions were found to be suitable for the casting of crack-free, optically clear glasses of different color and with glass transition temperatures ranging from 595 to 775 °C. The crystallization behavior, structure, and thermal expansion behavior of selected glasses were analyzed by DTA, XRD, dilatometry, and heat treatment. The effect of P2O5 on the glass structure and crystallization behavior was also studied. P2O5 played a dual role depending on composition. In some glasses it acted as a nucleating agent while in others it suppressed crystallization. Heat treatment of borate and borosilicate glasses transformed them into glass-ceramics while comparable SrO–TiO2–Al2O3–SiO2 glasses showed a lower tendency to crystallize and form glass-ceramics under the same conditions.  相似文献   

9.
In this study, optical coatings were investigated as substitutes for the coverglass on flexible thin-film space solar cells. The inherent low emissivity of copper-indium-gallium-diselenide (CIGS) thin-film solar cells was increased using optical coatings for thermal balance in space. Evaporated silicon dioxide (SiO2) and an additional aluminum oxide (Al2O3) coating on the CIGS solar cell increased the emissivity from 0.18 to 0.77. Higher emissivity was realized with the Al2O3/SiO2 double-layer coating than with the SiO2 single-layer coating. The straightforward double-layer coating gives the CIGS solar cells appropriate radiative properties for keeping the cell within a permissible temperature range in space.  相似文献   

10.
Auger electron spectroscopy in conjunction with ion sputter profiling was used to study the physical distribution and chemistry of aluminum, silicon and oxygen at the interface between sputter-deposited aluminum films and SiO2 substrates. It is expected from thermodynamic considerations that the aluminum will reduce the SiO2 wherever the two are in direct contact, leaving Al2O3 and free silicon. We describe the capabilities of this experimental technique in the analysis of the reaction. Our observations of the atomic percentages of the solid state reaction products and their variation with distance through the interface show that the reduction does occur, that it results in regions with up to approximately 10% free silicon and Al2O3 and that the reaction products are distributed over a layer approximately 400 Å thick.  相似文献   

11.
High quality epitaxial Bi3.15Nd0.85Ti3O12 (BNT) thin films with thicknesses from 30 to 80 nm have been integrated on SiO2/Si substrates. MgO templates deposited by ion-beam-assisted deposition and SrRuO3 (SRO) buffer layers processed by pulsed laser deposition have been used to initiate the epitaxial growth of BNT films on the amorphous SiO2/Si substrates. The structural and ferroelectric properties were investigated. Microstructural studies by X-ray diffraction and transmission electron microscopy revealed high quality crystalline with an epitaxial relationship of (001)BNT||(001)SRO||(001)MgO and [100]BNT||[110]SRO||[110]MgO. A ferroelectric hysteresis loop with a remanent polarization of 3.1 μC/cm2 has been observed for a 30 nm thick film. The polarization exhibits a fatigue-free characteristic up to 1.44 × 1010 switching cycles.  相似文献   

12.
SiO2/Al2O3 composite microspheres with SiO2 core/Al2O3 shell structure and high surface area were prepared by depositing Al2O3 colloid particles on the surface of monodispersed microporous silica microspheres using a simple electrostatic attraction and heterogeneous nucleation strategy, and then calcined at 600 °C for 4 h. The prepared products were characterized with differential thermal analysis and thermogravimetric analysis (DTA/TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). It was found that uniform alumina coating could be deposited on the surface of silica microspheres by adjusting the pH values of the reaction solution to an optimal pH value of about 6.0. The specific surface area and pore volume of the SiO2/Al2O3 composite microspheres calcined at 600 °C were 653 m2 g−1 and 0.34 ml g−1, respectively.  相似文献   

13.
The syntheses of lightweight geopolymeric materials from highly porous siliceous materials viz. diatomaceous earth (DE) and rice husk ash (RHA) with high starting SiO2/Al2O3 ratios of 13.0-33.5 and Na2O/Al2O3 ratios of 0.66-3.0 were studied. The effects of fineness and calcination temperature of DE, concentrations of NaOH and KOH, DE to RHA ratio; curing temperature and time on the mechanical properties and microstructures of the geopolymer pastes were investigated. The results indicated that the optimum calcination temperature of DE was 800 °C. Increasing fineness of DE and starting Na2O/Al2O3 ratio resulted in an increase in compressive strength of geopolymer paste. Geopolymer pastes activated with NaOH gave higher compressive strengths than those with KOH. The optimum curing temperature and time were 75 °C and 5 days. The lightweight geopolymer material with mean bulk density of 0.88 g/cm3 and compressive strength of 15 kg/cm2 was obtained. Incorporation of 40% RHA to increase starting SiO2/Al2O3 and Na2O/Al2O3 ratios to 22.5 and 1.7 and enhanced the compressive strength of geopolymer paste to 24 kg/cm2 with only a marginal increase of bulk density to 1.01 g/cm3. However, the geopolymer materials with high Na2O/Al2O3 (>1.5) were not stable in water submersion.  相似文献   

14.
Ca3Co4O9 thin films are deposited on Al2O3(001) substrates using a sol-gel spin-coating process. X-ray diffraction shows that the film exhibits a single phase of Ca3Co4O9 with the (00l) planes parallel to the film surface. The temperature dependence of magnetic susceptibility showed as expected the existence of two magnetic transitions similar to those observed in bulk samples: a ferrimagnetic and a spin-state transition around 19 and 375 K, respectively. At 5 K the magnetization curves along the c-axis of the Al2O3(001) show that the remanent magnetization and coercive field are close to those obtained for films grown by pulsed laser deposition, which evidences the interest to use such an easy technique to grow complex thin films oxides.  相似文献   

15.
HfO2/SiO2 and Al2O3/SiO2 multilayers to be employed as high reflectance end mirrors in Cerium-doped fluoride solid-state lasers were produced by radio frequency sputtering. The components were designed to have high transmittance at the pumping wavelength and high reflectance in a wavelength band corresponding to the active medium emission. A photoacoustic beam deflection technique and inspection of the irradiated area under a microscope were used to measure the laser induced damage threshold of the mirrors at the pumping wavelength. These coatings were tested in a laser cavity.  相似文献   

16.
Glass-ceramic matrices containing zirconolite (nominally Ca(Zr,Hf)Ti2O7) crystals in their bulk that would incorporate high proportions of minor actinides (Np, Am, Cm) or plutonium could be envisaged for their immobilization. Zirconolite-based glass-ceramics can be prepared by controlled crystallization of zirconolite in glasses belonging to SiO2–Al2O3–CaO–Na2O–TiO2–ZrO2–HfO2 system. In this study, neodymium was used as trivalent actinides surrogate. Increasing Al2O3 concentration in glass composition had a strong effect on the nucleation rate I z of zirconolite crystals in the bulk, on the amount of neodymium incorporated in zirconolite phase and on the crystal growth rate of silicate phases (titanite + anorthite) from glass surface. These results could be explained by the existence of competition—in favor of aluminum—between Al3+ and (Ti4+, Zr4+, Hf4+) ions for their association with charge compensators cations to facilitate their incorporation in the glassy network. Differential thermal analysis (DTA) was used to study exothermal effects associated with bulk and surface crystallization. 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra showed that aluminum enters glasses network predominantly in 4-fold coordination. Neodymium optical absorption and fluorescence spectroscopies showed that the Al2O3 concentration changes performed in this study had not significant effect on Nd3+ ions environment in glasses.  相似文献   

17.
The system of the nanoinclusions of Si in the SiO2 and Al2O3 matrix (SiO2:Si, Al2O3:Si) attracts great attention due to its ability of the luminescence in visible and near-IR range of spectrum. The influence of the P ion alloying on the electronic structure of nanocomposites was investigated. The P ion doping and post-annealed at T = 1000 °C (2 h) results in the enhancement of the photoluminescence (PL) peak connected with the Si nanocrystals. The electronic structure was investigated by X-ray photoelectron spectroscopy (XPS) and high-resolution electron energy losses spectroscopy (HREELS) methods. Ion surface modification and annealing forms the special nanostructure with Si nanocrystals in SiO2 and Al2O3 matrix having high density of interfaces with special atomic structure and various degree of oxidation of Si atoms on the boundaries. HREELS investigations show that the P ion doping increases the probability of interband transitions in SiO2:Si and Al2O3:Si composites.  相似文献   

18.
J.F. Hu  J.S. Chen  B.C. Lim 《Thin solid films》2008,516(8):2067-2070
The introduction of the soft magnetic underlayer (SUL) in perpendicular recording technology is to further increase the recording areal density. However, problems such as growth of the uncontrollable recording layer and additional media noise contributed from the SUL could be resulted. In this work, a synthetic antiferromagnetically (SAF) coupled (002) oriented Fe65Co35 film as an SUL was developed for L10 ordered FePt based double-layered recording media. The crystallography of hetero-epitaxially grown double-layered media CrRu/(Ru/FeCo)2/Pt/FePt/Ru was demonstrated. The L10 ordered FePt based double-layered perpendicular recording media with SAF coupled FeCo films as the SUL were developed.  相似文献   

19.
The electrical properties of an Al2O3/Ge gate stack structure were improved by O2-annealing. The interface state density can be decreased by O2-annealing without the formation of a GeO2 interfacial layer. X-ray photoelectron spectroscopy measurements revealed that Ge diffusion into the Al2O3 layer occurs and Ge is uniformly distributed in the oxide layer after O2-annealing. Crystallization of the Al2O3 film was observed after O2-annealing at 550 °C and was identified as an Al-Ge-O compound using cross sectional transmission electron microscopy and transmission electron diffraction measurement.  相似文献   

20.
Atomic layer deposition was applied to fabricate metal oxide films on planar substrates and also in deep trenches with appreciable step coverage. Atomic layer deposition of Ru electrodes was realized on planar substrates. Electrical and structural behaviour of HfO2-TiO2 and Al2O3-TiO2 nanolaminates and mixtures as well as Al2O3 films were evaluated. The lowest leakage current densities with the lowest equivalent oxide thickness were achieved in mixed Al2O3-TiO2 films annealed at 700 °C, compared to all other films in as-deposited state as well as annealed at 900 °C. The highest permittivities in this study were measured on HfO2-TiO2 nanolaminates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号