首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films were grown on (001) SiO2, SiO2/(100) Si or (100) MgO substrates by laser ablation of neodymium-doped potassium gadolinium tungstate (Nd:KGW) single crystal target. The films were deposited at temperatures between room temperature and 750 °C and pressures between 1 × 10− 4 Pa and 50 Pa of oxygen ambient. The influence of the deposition conditions on the composition, structure, morphology and electrical properties of the films was investigated. Special attention was paid to the films deposited in vacuum (1 × 10− 4 Pa) or at very low oxygen pressures. Under such conditions, the potassium (K), gadolinium (Gd) and oxygen (O) content decreased strongly as the temperature was increased. At room temperature, the films were K and O stoichiometric, in contrast with Gd, which showed a concentration twice higher. The films were polycrystalline, with the exception of those deposited at temperatures below 500 °C, which were amorphous. However, all were smooth and dense. The films grown in vacuum and at temperatures between 500 and 700 °C consist mainly of “â-tungsten” - tungsten oxide (W3O) phase. The films grown on SiO2/Si possessed the best surface quality with nano-size relief. The resistivity measurements as a function of the temperature showed that the films produced in vacuum and at temperatures below 500 °C were highly insulating, whereas at 600 °C they exhibited semiconducting behavior or a metallic one at 700 °C. This behavior can be attributed to the existence of various valence states for tungsten below W6+ in the films and to their crystal structure.  相似文献   

2.
Bi2Se3 thin films were deposited on the (100) oriented Si substrates by pulsed laser deposition technique at different substrate temperatures (room temperature −400 °C). The effects of the substrate temperature on the structural and electrical properties of the Bi2Se3 films were studied. The film prepared at room temperature showed a very poor polycrystalline structure with the mainly orthorhombic phase. The crystallinity of the films was improved by heating the substrate during the deposition and the crystal phase of the film changed to the rhombohedral phase as the substrate temperature was higher than 200 °C. The stoichiometry of the films and the chemical state of Bi and Se elements in the films were studied by fitting the Se 3d and the Bi 4d5/2 peaks of the X-ray photoelectron spectra. The hexagonal structure was seen clearly for the film prepared at the substrate temperature of 400 °C. The surface roughness of the film increased as the substrate temperature was increased. The electrical resistivity of the film decreased from 1 × 10−3 to 3 × 10−4 Ω cm as the substrate temperature was increased from room temperature to 400 °C.  相似文献   

3.
Au/NiCr/Ta multi-layered metallic films were deposited on Si substrate by magnetron sputtering at different substrate temperatures. The residual stress, hardness and resistivity were investigated as a function of substrate temperature by laser polarization phase shift technique, nanoindentation technique and four point probe method, respectively. The residual stress in as-deposited films at different substrate temperatures was tension with 385 MPa-606 MPa. Nanoindentation tests at shallow indentation depths (h ≤ t/4) where the hardness is reliable for metal films on hard substrate. Au film at deposition temperature 200 °C has the highest hardness 4.2 GPa. The resistivity in the deposited films reached the lowest value 3.1 μΩ.cm at substrate temperature 200 °C. The most interesting facts are that the hardness decreases with increasing residual stress and resistivity increases with increasing residual stress. The relationship of residual stress and resistivity may hint that there is a definite correlation between the mechanical properties and electrical properties in the metallic films.  相似文献   

4.
Nanostructured tin oxide thin films were deposited on the Si (100) substrate using the pulsed laser deposition technique at different substrate temperatures (300, 450 and 600 °C) in an oxygen atmosphere. The structure and morphology of the as-deposited films indicate that the film crystallinity and surface topography are influenced by the deposition temperature by changing from an almost amorphous to crystalline microstructure and smoother topography at a higher substrate temperature. The photoluminescence measurement of the SnO2 films shows three stable emission peaks centered at respective wavelengths of 591, 554 and 560 nm with increasing deposition temperature, contributed by the oxygen vacancies.  相似文献   

5.
Indium tin oxide (ITO) films were deposited on glass substrate at temperatures ranging from room temperature to 120 °C by the dc arc discharge ion plating technique. The electrical properties and crystallinity of ITO films were investigated. The resistivity of ITO films decreased with the increase of the substrate temperature in deposition, mostly due to increase in Hall mobility above 90 °C. The resistivity of ITO film obtained at temperature 120 °C was 1.33×10−4 Ω cm. The ITO films crystallized at the substrate temperature higher than 90 °C and the grain size estimated from the (2 2 2) peak in the direction parallel to the surface of the substrate became large with the increase of the substrate temperature. That the Hall mobility increased with the increase of the substrate temperature was speculated to be due to the increase of the grain size in the direction parallel to the surface.  相似文献   

6.
We have studied the dependence of dielectric properties on the deposition temperature of BiFeO3 thin films grown by the pulsed laser deposition technique. Thin films have been grown onto amorphous silica glass substrates with pre-patterned Au in-plane capacitor structures. It is shown that on the amorphous glass substrate, BiFeO3 films with a near-bulk permittivity of 26 and coercive field of 80 kV/cm may be grown at a deposition temperature of about 600 °C and 1 Pa oxygen pressure. Low permittivity and higher coercive field of the films grown at the temperatures below and above 600 °C are associated with an increased amount of secondary phases. It is also shown that the deposition of BiFeO3 at low temperature (i.e. 500 °C) and post deposition ex-situ annealing at elevated temperature (700 °C) increases the permittivity of a film. The applied bias and time dependence of capacitance of the films deposited at 700 °C and ex-situ annealed films are explained by the de-pinning of the ferroelectric domain-walls.  相似文献   

7.
Aluminum-doped zinc oxide thin films (ZnO:Al) were deposited on sodocalcic glass substrates by the chemical spray technique, using zinc acetate and aluminum pentanedionate as precursors. The effect of the [Al/Zn] ratio in the starting solution, as well as the substrate temperature, on the physical characteristic of ZnO:Al thin films was analyzed. We have found that the addition of Al to the starting solution decreases the electrical resistivity of the films until a minimum value, located between 2 and 3 at.%; a further increase in the [Al/Zn] ratio leads to an increase in the resistivity. A similar resistivity tendency with the substrate temperature was encountered, namely, as the substrate temperature is increased, a minimum value of around 475 °C in almost all the cases, was obtained. At higher deposition temperatures the film resistivity suffers an increase. After a vacuum-thermal treatment, performed at 400 °C for 1 h, the films showed a resistivity decrease about one order of magnitude, reaching a minimum value, for the films deposited at 475 °C, of 4.3 × 10− 3 Ω cm.The film morphology is strongly affected by the [Al/Zn] ratio in the starting solution. X-ray analysis shows a (002) preferential growth in all the films. As the substrate temperature increases it is observed a slight increase in the transmittance as well as a shift in the band gap of the ZnO:Al thin films.  相似文献   

8.
Niobium Oxide (Nb2O5) thin films were deposited on the glass substrates, using spray pyrolysis technique. During deposition the preparative parameters like nozzle to substrate distance, spray rate, concentration of the sprayed solution were kept constant at optimized values. The effect of substrate (deposition) temperature (varied between 250 to 450°C) and post annealing treatment (at temperature 500°C) on the structural, optical and electrical properties of thin films were studied. Using scanning electron microscopy and X-ray diffraction technique morphological and structural characterizations of the films were carried out. For optical and electrical properties of thin films, optical absorption and two probe electrical resistivity techniques were used. It has been observed that with increase in the substrate temperature films become micro or polycrystalline. Annealed films exhibit higher crystallinity. Other parameters like thickness, electrical resistivity and band gap energy value decrease with increase in substrate temperature.  相似文献   

9.
Indium zinc oxide (IZO) films were deposited as a function of the deposition temperature using a sintered indium zinc oxide target (In2O3:ZnO = 90:10 wt.%) by direct current (DC) magnetron reactive sputtering method. The influence of the substrate temperature on the microstructure, surface roughness and electrical properties was studied. With increasing the temperature up to 200 °C, the characteristic properties of amorphous IZO films were improved and the specific resistivity was about 3.4 × 10− 4 Ω cm. Change of structural properties according to the deposition temperature was also observed with X-ray diffraction patterns, transmission electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. IZO films deposited above 300 °C showed polycrystalline phases evolved on the amorphous IZO layer. Very flat surface roughness could be obtained at lower than 200 °C of the substrate temperature, while surface roughness of the films was increased due to the formation of grains over 300 °C. Consequently, high quality IZO films could be prepared by DC magnetron sputtering with O2/Ar of 0.03 and deposition temperature in range of 150-200 °C; a specific resistivity of 3.4 × 10− 4 Ω cm, and the values of peak to valley roughness and root-mean-square roughness are less than 4 nm and 0.5 nm, respectively.  相似文献   

10.
BiFeO3 (BFO) films were grown on LaNiO3-coated Si substrate by a RF magnetron sputtering system at temperatures in the range of 300-700 °C. X-ray reflectivity and high-resolution diffraction measurements were employed to characterize the microstructure of these films. For a substrate temperature below 300 °C and at 700 °C only partially crystalline films and completely randomly polycrystalline films were grown, whereas highly (001)-orientated BFO film was obtained for a substrate temperature in the range of 400-600 °C. The crystalline quality of BFO thin films increase as the deposition temperature increase except for the film deposited at 700 °C. The fitted result from X-ray reflectivity curves show that the densities of the BFO films are slightly less than their bulk values. For the BFO films deposited at 300-600 °C, the higher the deposition temperature, the larger the remnant polarization and surface roughness of the films present.  相似文献   

11.
Extremely smooth iridium (Ir) thin films were deposited on Si(1 0 0) substrate at lower temperature than 300 °C by pulsed laser deposition (PLD) technique using Ir target in a vacuum atmosphere. The crystal orientation, surface morphology, and resistivity of the Ir thin films were systematically determined as a function of substrate temperature. Well-crystallized and single-phase Ir thin films with (1 1 1) preferred orientation were obtained at substrate temperature of 200-300 °C. The surface roughness increased with the increasing of substrate temperature. Likewise, the room-temperature resistivity of Ir thin films decreased with increasing substrate temperature, showing a low value of (10.7±0.1) μΩ cm at 300 °C.  相似文献   

12.
ZnO films have been grown on (100) oriented MgO substrates by pulsed-electron beam deposition in the room temperature to 500 °C range. Highly (00·2) textured films are obtained for a growth temperature higher than 200 °C, and epitaxial films are formed at 500 °C with the following epitaxial relationships: (1-1·0)ZnO // (110)MgO and (11·0)ZnO // (110)MgO, despite the difference in symmetry between film and substrate. The low temperature resistivity curves evidenced a metal-semiconductor transition for the ZnO films grown in the 300 to 500 °C range which has been interpreted in the frame of the model of conductivity in disordered oxides.  相似文献   

13.
The optimization of the deposition process of n-type Bismuth Telluride and p-type Antimony Telluride thin films for thermoelectric applications is reported. The films were deposited on a 25 μm-thick flexible polyimide (kapton) substrate by co-evaporation of Bi and Te, for the n-type element, and Sb and Te, for the p-type element. The evaporation rate of each material was monitorized by an oscillating crystal sensor and the power supplied to each evaporation boat was controlled with a PID algorithm in order to achieve a precise user-defined constant evaporation rate.The influence of substrate temperature (in the range 240-300 °C) and evaporation rates of Bi, Te and Sb on the electronic properties of the films was studied and optimized to obtain the highest Seebeck coefficient. The best n-type Bi2Te3 films were deposited at 300 °C with a polycrystalline structure, a composition close to stoichiometry, electrical resistivity ∼20 μΩ m and Seebeck coefficient −195 μV/°C. The best p-type Sb2Te3 films were deposited at 240 °C, are slightly Te-rich, have electrical resistivity ∼20 μΩ m and Seebeck coefficient +153 μV/°C. These high Seebeck coefficients and low electrical resistivities make these materials suitable for fabrication of Peltier coolers and thermopile devices.  相似文献   

14.
The effect of carrier gas, such as H2, He, and Ar, on the deposition rate, film morphology, resistivity, and chemical composition of Al thin film from dimethylethylamine alane (DMEAA) was investigated. The deposition rate was highest in H2 carrier gas and lowest in Ar, when the substrate temperature is above 150 °C. The surface morphology of the film deposited in He carrier gas was rough and particles from gas phase reaction, were also observed on the film surface. The film deposited in He carrier gas had a higher resistivity than the films deposited in H2 or Ar at the higher substrate temperature due to oxygen impurity incorporated in the film.  相似文献   

15.
Nickel oxide thin films were prepared using chemical bath deposition and reactive magnetron dc-sputtering. Through the chemical route, Ni(OH)2 films were deposited with a nano-porous structure providing large specific surface area. Subsequent annealing at 300 °C transformed the films into NiO. These films showed high absorption in the visible range and low crystallinity due to Ni vacancies. Annealing at higher temperatures removes Ni vacancies improving transmittance and crystallinity. Sputtered films were obtained in Ar + O2 and Ar + H2 + O2 atmospheres at different flux ratios. During deposition in the former atmosphere, substrate temperature was 300 °C producing dense polycrystalline films with excellent optical properties. In the hydrogen containing atmosphere, the substrate was at room temperature and polycrystalline films with a dark-yellowish color and expanded lattice were obtained.  相似文献   

16.
Anatase titanium dioxide (TiO2) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO2 pellets as the source material. Highly transparent TiO2 thin films prepared at substrate temperatures from room temperature to 400 °C exhibited photocatalytic activity, regardless whether oxygen (O2) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO2 thin films prepared at 300 °C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO2 thin film with a resistivity of 2.6 × 10− 1 Ω cm was prepared at a substrate temperature of 400 °C without the introduction of O2 gas.  相似文献   

17.
S. Iwatsubo 《Vacuum》2006,80(7):708-711
Indium tin oxide (ITO) films were deposited by reactive ion-beam sputtering. The relationship among the surface morphology, the resistivity ρ of the films, the substrate temperature TS and the film thickness tF was investigated. The heat power from the ion source during the sputtering was 265 W. TS increased from 30 to 145 °C with an increase of tF. The films thinner than 187 nm at TS lower than 120 °C were amorphous, the film surface was as smooth as the substrate. The films deposited at TS in the range between 135 and 145 °C were polycrystalline. So, the films thicker than 375 nm were in a multilayer structure of a polycrystalline layer on an amorphous layer. The surface of the polycrystalline films became rough. ρ of the films suddenly decreased at tF of 375 nm, where the structure of the films changed. Next, the amorphous films with tF of 39 nm were annealed in the atmosphere. The film structure changed to a polycrystalline structure at annealing temperature TA of 350 °C. However, the surface roughness of all the films was almost same. As a result, the substrate temperature during the sputtering was important for the deposition of the films with a very smooth surface.  相似文献   

18.
Y.M. Zhou  H.N. Xiao  J. He 《Vacuum》2008,83(2):286-291
Effects of deposition parameters on tantalum films deposited by direct current magnetron sputtering were studied. The results indicated that the electrical properties were relative to the oxygen and other impurities rather than to growth orientation. As the sputtering power increases from 25 to 100 W, the preferred-growth orientation of Ta films changes from (200) to (202) and the oxygen and impurities content in the films decrease. The temperature coefficient of resistance also reduces from −289.79 to −116.65 ppm/°C. The O/Ta ratio decrease and grain size reduction related to a change of electrical resistivity were observed at substrate temperatures in the range 300-500 °C. At 650 °C, partial stable α-Ta associated with a sharp decrease of the electrical resistivity was also found.  相似文献   

19.
We report the structural and optical properties of nanocrystalline thin films of vanadium oxide prepared via evaporation technique on amorphous glass substrates. The crystallinity of the films was studied using X-ray diffraction and surface morphology of the films was studied using scanning electron microscopy and atomic force microscopy. Deposition temperature was found to have a great impact on the optical and structural properties of these films. The films deposited at room temperature show homogeneous, uniform and smooth texture but were amorphous in nature. These films remain amorphous even after postannealing at 300 °C. On the other hand the films deposited at substrate temperature TS > 200 °C were well textured and c-axis oriented with good crystalline properties. Moreover colour of the films changes from pale yellow to light brown to black corresponding to deposition at room temperature, 300 °C and 500 °C respectively. The investigation revealed that nanocrystalline V2O5 films with preferred 001 orientation and with crystalline size of 17.67 nm can be grown with a layered structure onto amorphous glass substrates at temperature as low as 300 °C. The photograph of V2O5 films deposited at room temperature taken by scanning electron microscopy shows regular dot like features of nm size.  相似文献   

20.
Iodine is an effective catalyst to obtain homogeneous and smooth metal films with good interface properties. We adopted an iodine catalyst during the nickel film deposition by using atomic layer deposition (ALD) with bis(1-dimethylamino-2-methyl-2-butoxide)nickel [Ni(dmamb)2] precursor and hydrogen reactant gas. The effect of iodine catalyst to nickel nucleation process was studied. The deposited films were silicided by rapid thermal process (RTP) which was performed by varying temperature from 400 °C to 900 °C in nitrogen ambient. The crystalline properties of nickel and nickel silicide films were examined by X-ray diffractometer (XRD) with various deposition temperatures. The interface properties and the surface morphology of nickel silicide films were studied by using Auger electron spectroscopy (AES) depth profile analyses and scanning electron microscopy (SEM). The experimental results showed that the iodine-catalyzed silicide film, which have a clean and smooth interface, exhibit lower resistivity, and lower leakage current density compared to that of non iodine-catalyzed films in implemented n+/p junction diode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号