首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The influence of the thickness of CVD diamond coatings on the adhesion to a substrate, after cooling down from deposition temperature to room temperature, has been studied experimentally and theoretically. Diamond layers have been deposited at 850°C on W substrates by microwave plasma enhanced CVD. Cooling down of the substrate-diamond coating system to room temperature induces thermal stresses, due to different thermal expansion coefficients of coating and substrate. For thick diamond coatings a total and sudden delamination could be observed as a consequence of these stresses. On the contrary thin coatings, produced under identical circumstances, adhered well. These phenomena have been modelled and explained by the use of an energetic criterion for the delamination of a two-layer system under thermal stress. From the model a critical thickness of the coating can be calculated. Above this critical thickness, delamination will suddenly occur. The calculations also predict that for intermediate coating thicknesses delamination can easily be induced by external causes.  相似文献   

2.
Chemical vapour deposition (CVD) diamond coatings deposited on various substrates usually contain residual stresses. Since the residual stress affects the adhesion of the coating to the substrate, as well as the performance of the coating/substrate composite in many technical applications it is of importance to study the magnitude of these stresses.

In the present study the hot flame method was used to deposit diamond coatings on cemented carbide inserts by scanning the surface with a nine flame nozzle. By varying the oxygen to acetylene flow ratio and the deposition time coatings of different qualities and thicknesses were obtained. The residual strain/stress of the coatings was measured by three different methods: X-ray diffraction using the sin2 (Ψ) method, Raman spectroscopy and disc deflection measurements. To extract the residual stress from the strain data the Young's modulus was obtained from bending tests of diamond cantilever beams manufactured from free standing diamond films. The latter technique was also used to determine the fracture stress of the diamond films.

All deposited coatings displayed a residual compressive strain/stress state. The residual strain in the diamond coatings did not vary with coating thickness (1.5 μm to 20 μm) but was found to increase from −1.8 × 10−3 to −2.2 × 10−3 with decreasing diamond quality. The compressive residual stress was found to decrease from −2 GPa to −1.3 GPa with decreasing diamond quality. This is mainly due to a decrease in Young's modulus (from 1.1 TPa to 0.6 TPa) with decreasing diamond quality. Also the fracture stress was found to decrease (from 1.8 GPa to 0.8 GPa) with decreasing diamond quality. The three methods used for measuring the stress state in the coatings, X-ray diffraction, Raman spectroscopy and deflection measurement, all give the same result. The deflection technique has the advantage that no information about the elastic properties of the coating is needed, whereas Raman spectroscopy has the best lateral resolution (≈5 μm) and is the fastest method (≈5 min).  相似文献   


3.
The effect of fluidized bed (FB) treatment upon hot filament chemical vapor deposition (HFCVD) of polycrystalline diamond films onto WC-Co hardmetal substrates was investigated. Several scenarios to make the substrates ready for HFCVD were, comparatively, evaluated and the resulting diamond films were examined in terms of their morphology and adhesion. The diamond grain density was measured by scanning electron microscopy. The adhesion of continuous diamond film to substrate was evaluated by the reciprocal of the slope of crack radius-indentation load functions. Surface binder dissolution followed by FB treatment (PF pretreatment) allowed very high diamond nucleation density and smaller grain size. The adhesion of films grown on PF pretreated substrates was found to be very close to that of films deposited on hardmetal slabs pretreated by Murakami's reagent followed by Co etching with Caro's acid and seeded with diamond suspension in an ultrasonic vessel (MPS pretreatment). However, diamond coatings on MPS pretreated samples exhibited a rougher surface morphology as a result of both lower diamond nucleation density and larger substrate surface roughening by Murakami's etching. Based upon experimental findings, our newly developed PF pretreatment was found to be a very promising technique in substrates conditioning as well as in promoting adherent, uniform and smooth diamond coatings onto hardmetal tools and wear parts.  相似文献   

4.
Typical defects in microstructure at a surface-coating interface in chemical vapor deposition coated cemented carbides are described. Results on applying new technologies developed to improve reliability and serviceability of coated cemented carbides are presented. Using WC-based cemented carbide substrates with a uniform, fine microstructure etched before coating eliminates various defects at the surface-coating interface. This results in improvement in serviceability and reliability of the coated cemented carbides in metal-cutting.  相似文献   

5.
High temperature steam oxidation resistance of aluminide coatings obtained on 9-12% Cr ferritic-martensitic steels, which have been developed by chemical vapour deposition in fluidized bed reactor (CVD-FBR) using a bed modified with Zr particles, is presented here. The resulting coatings composed of (Fe,Cr)2Al5 intermetallic phase provide a high temperature steam oxidation resistance, which depends on the oxidation temperature. At 650 °C, after 1000 h of exposure, the alumina formed on the surface acts as a protective barrier. However, when the oxidation temperature increases up to 800 °C, the alumina scale fails before 1000 h of exposure giving rise to the formation of the Cr2O3 and (Fe,Mn)3O4, due to the high atomic diffusion rate at this temperature.  相似文献   

6.
改性金刚石膜的形貌、结构和附着性能   总被引:1,自引:0,他引:1  
为了提高金刚石膜/基附着力,通过氧辅助使高温钨丝蒸发,在基底表面与碳氢基团反应生成纳米碳化钨,从而得到金刚石和纳米碳化钨混合的改性金刚石膜.用扫描电子显微镜、X射线衍射仪和压痕法研究了改性金刚石膜的形貌、结构和附着力性能.结果表明,碳钨化合物以纳米相存在于改性金刚石膜中.碳钨化合物的存在使改性金刚石膜的硬度下降,但是适当的碳钨化合物能使膜/基附着力性能得到较大提高.当氧气通入量为1.2sccm时,膜/基附着力性能最好.  相似文献   

7.
Atmospheric pressure chemical vapour deposition of VCl4, WCl6 and water at 550 °C lead to the production of high quality tungsten doped vanadium dioxide thin films. Careful control of the gas phase precursors allowed for tungsten doping up to 8 at.%. The transition temperature of the thermochromic switch was tunable in the range 55 °C to − 23 °C. The films were analysed using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Their optical properties were examined using variable-temperature transmission and reflectance spectroscopy. It was found that incorporation of tungsten into the films led to an improvement in the colour from yellow/brown to green/blue depending on the level of tungsten incorporation. The films were optimized for optical transmission, thermochromic switching temperature, magnitude of the switching behaviour and colour to produce films that are suitable for use as an energy saving environmental glass product.  相似文献   

8.
In order to investigate the effects of argon and oxygen on diamond synthesis, the behaviors of diamond deposition using microwave plasma chemical vapor deposition method have been studied by varying the concentrations of argon and oxygen in the methane-hydrogen gas mixture. Diamond films were deposited on silicon wafer under the conditions of substrate temperatures: 1073 1173 K, total reaction pressure: 5333 Pa (40 Torr), methane concentrations: 0.5 5.0%, and they were characterized by scanning electron microscopy, Raman spectroscopy and optical emission spectroscopy. The deposition rates of diamond films were enhanced by adding argon into the methane-hydrogen system, but nondiamond carbon phases in the films also increased. It resulted from the increase of hydrocarbon radicals in the plasma. As oxygen was added, the quality of deposited diamond films was improved due to the decrease of C2 radicals and increase of OH radicals in the plasma. Simultaneous addition of 0.3% oxygen and 20% argon has been able to effectively suppress the formation of nondiamond carbon components and increase the deposition rate of diamond films. It appears that the ionized argon (Ar+) and excited argon atoms (Ar*) may activate the various chemical species and promote the reactions between the gas phase species and oxygen in the plasma.  相似文献   

9.
L. Constant 《Thin solid films》2008,516(5):691-695
This paper reports on the kinetics of diamond nucleation and growth on polycrystalline copper investigated by in situ Auger Electron Spectroscopy and Scanning Electron Microscopy. Copper is a reference substrate to study the diamond nucleation from graphite. The substrate is first treated with diamond paste. However the diamond seeds let on the surface by the pre-treatment are almost completely transformed into graphite. The nucleation of CVD diamond can be well described in the framework of carbon phase transformations. Diamond seeds deposited on the substrate are first transformed into graphitic layers. A process occurring on the edges site of graphite is subsequently postulated, in agreement with the Lambrecht model.  相似文献   

10.
The interfacial structures of diamond coatings deposited on pure titanium substrate were analyzed using scanning electron microscopy and grazing incidence X-ray diffraction. Results showed that beneath the diamond coating, there was one titanium carbide and hydride interlayer, followed by a heat-affected and carbon/hydrogen diffused Ti layer. Residual stress in the diamond coating and TiC interlayer under different process parameters were measured using Raman and X-ray diffraction (XRD) methods. Diamond coatings showed large compressive stress on the order of a few giga Pascal. XRD analysis also showed the presence of compressive stress in the TiC interlayer and tensile stress in the Ti substrate. With increasing deposition duration, or decreasing plasma power and concentration of CH4 in gas mixture, the compressive residual stress in the diamond coating decreased. The large residual stress in the diamond coating resulted in poor adhesion of the coatings to substrate, but adhesion was also related to other factors, such as the thickness and nature of the TiC interlayer, etc. A graded interlayer design was proposed to lower the thermal stress, modify the interfacial structure and improve the adhesion strength.  相似文献   

11.
ZnO nanoneedles were coated on hot filament chemical vapour deposited diamond thin films to enhance the field emission properties of ZnO nanoneedles. The virgin diamond films and ZnO nanoneedles on diamond films were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The field emission studies reveal that the ZnO nanoneedles coated on diamond film exhibit better emission characteristics, with minimum threshold field (required to draw a current density ~ 1 μA/cm2) as compared to ZnO needles on silicon and virgin diamond films. The better emission characteristic of ZnO nanoneedles on diamond film is attributed to the high field-enhancement factor resulting due to the combined effect of the ZnO nanoneedles and diamond film.  相似文献   

12.
Four mechanical parameters of physical vapor-deposited (PVD) hard coatings were obtained, which were the residual strain, Young's modulus, film toughness, and interface toughness, concerning titanium aluminum nitride (TiAlN) and titanium nitride (TiN) coatings deposited on WC-Co substrates. The results were quantitatively compared with the author's previous trials for the case of chemical vapor-deposited (CVD) diamond coatings. Due to the significant difference in the mechanical properties between PVD hard coatings and CVD diamond coatings, it was necessary to develop new experimental techniques, which could properly evaluate those parameters for the case of PVD hard coatings. As a conclusion, film toughness of PVD hard coatings was surprisingly brittle. It was an order of magnitude smaller than that of CVD diamond coatings. In contrast, no significant difference was found in interface toughness between these different kinds of coatings. Concerning the residual strain, TiN had far larger level than the other two. These differences in mechanical properties were further discussed in relation to the difference in their wear behavior.  相似文献   

13.
Diamond coating on Ti-6Al-4V alloy was carried out using microwave plasma enhanced CVD with a super high CH4 concentration, and at a moderate deposition temperature close to 500 °C. The nucleation, growth, adhesion behaviors of the diamond coating and the interfacial structures were investigated using Raman, XRD, SEM/TEM, synchrotron radiation and indentation test. Nanocrystalline diamond coatings have been produced and the nucleation density, nucleation rate and adhesion strength of diamond coatings on Ti alloy substrate are significantly enhanced. An intermediate layer of TiC is formed between the diamond coating and the alloy substrate, while diamond coating debonding occurs both at the diamond-TiC interface and TiC-substrate interface. The simultaneous hydrogenation and carburization also cause complex micro-structural and microhardness changes on the alloy substrates. The low deposition temperature and extremely high methane concentration demonstrate beneficial to enhance coating adhesion strength and reduce substrate damage.  相似文献   

14.
Carbon nanotubes (CNTs) have been synthesized directly on the electrically conducting nickel substrate without additional catalyst. Field emission properties of the as-prepared sample were characterized using parallel plate diode configurations. It was observed that the field emission qualitatively follows the conventional Fowler–Nordheim (F–N) theory from the straight line of ln(I/V2) versus 1/V plot at the high applied field region. The uniformity and stability of the electron emission have also been examined. The low electron turn-on field (Eto) and high emission current density indicates the potential applications of this new CNT-based emitter.  相似文献   

15.
《材料科学技术学报》2019,35(12):2942-2949
In this work, the ZrC-SiC composite coatings were co-deposited by chemical vapor deposition (CVD) using ZrCl4, MTS, CH4 and H2 as raw materials. The morphologies, compositions and phases of the composite coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that the morphologies, compositions and phases of the composite coatings were related to the deposition temperature, the flow rate of the carrier H2 gas, and the ratio of C/Zr. Moreover, the co-deposition mechanism of the composite coatings was also studied. It was found that different deposition temperatures resulted in different deposition mechanisms. At temperatures in the range of 1150–1250 °C, the ZrC-SiC co-deposition was controlled by the surface kinetic process. At temperatures in the range of 1250–1400 °C, the ZrC-SiC co-deposition was controlled by the mass transport process.  相似文献   

16.
The scope of this work is the systematic study of the silicidation process affecting tungsten filaments at high temperature (1900 °C) used for silane decomposition in the hot-wire chemical vapour deposition technique (HWCVD). The correlation between the electrical resistance evolution of the filaments, Rfil(t), and the different stages of the their silicidation process is exposed. Said stages correspond to: the rapid formation of two WSi2 fronts at the cold ends of the filaments and their further propagation towards the middle of the filaments; and, regarding the hot central portion of the filaments: an initial stage of silicon dissolution into the tungsten bulk, with a random duration for as-manufactured filaments, followed by the inhomogeneous nucleation of W5Si3 (which is later replaced by WSi2) and its further growth towards the filaments core. An electrical model is used to obtain real-time information about the current status of the filaments silicidation process by simply monitoring their Rfil(t) evolution during the HWCVD process. It is shown that implementing an annealing pre-treatment to the filaments leads to a clearly repetitive trend in the monitored Rfil(t) signatures. The influence of hydrogen dilution of silane on the filaments silicidation process is also discussed.  相似文献   

17.
Silicon oxide and carbide ultrathin films (less than 50 Å thick) were grown at rates of up to 1 Å s−1 using a previously developed technique. To form silicon oxide, a mixture of silane or tetramethylsilane and water was condensed onto a metal surface, which was then exposed to either broad-band or monochromatized synchrotron radiation. Characterization by soft X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure showed that clean, near-stoichiometric films of self-limited thickness were grown. The results also suggested that the reactions leading to film growth were predominantly excited by electrons produced by photon absorption in the substrate.  相似文献   

18.
The deposition of carbon has been studied at high temperature on polycrystalline nickel by hot filaments activated chemical vapor deposition (HFCVD). The sequences of carbon deposition are studied by surface analyses: Auger electron spectroscopy (AES), electron loss spectroscopy (ELS), X-ray photoelectron spectroscopy (XPS) in a chamber directly connected to the growth chamber. A general scale law of the (C/Ni) intensity lines is obtained with a reduced time. Both, shape analysis of the AES C KVV line and the C1s relative intensity suggest a three-step process: first formation of graphene and a highly graphitic layer, then multiphase formation with graphitic, carbidic and diamond-like carbon and finally at a critical temperature that strongly depends on the pretreatment of the polycrystalline nickel surface, a rapid transition to diamond island formation. Whatever the substrate diamond is always the final product and some graphene layers the initial product. Moreover it is possible to stabilize a few graphene layers at the initial sequences of carbon deposition. The duration of this stabilization step is strongly depending however on the pre-treatment of the Ni surface.  相似文献   

19.
Carbon nitride (CNx) thin films were deposited using radio frequency plasma enhanced chemical vapor deposition (rf PECVD) from a mixture of ethane (C2H6), nitrogen (N2) and hydrogen (H2) gases. The C2H6 and N2 flow rates were kept constant, while the H2 flow rate was varied. The effects of hydrogen dilution on the growth rate and structural properties of the films were studied. It was found that a significant increase in the films growth rate was observed with the introduction of H2 at as low as 25 standard cubic centimeters per minute (sccm). A set of CNx films deposited from C2H6:N2 mixture without any inclusions of H2 were also presented in this work as a reference to compare the differences between those two sets and to understand the roles of H2 to the films properties. At highest H2 flow rate, the structure of the films changed from polymeric to graphitic and the quenching of PL was observed. Furthermore, higher N incorporation with lower Eg was obtained for these films compared to those of C2H6:N2 films. The change in the structure of the films corresponds to changes in their chemical bonding. As N incorporation increased, the porosity of the films increases and thus affects the disorder in the film structures.  相似文献   

20.
In this study, nanocomposite material consisting of silicon suboxide (SiOx) film embedded with gold nanoparticles (Au NPs) was synthesized using hybrid technique combining hot wire evaporation and plasma enhanced chemical vapour deposition (PECVD) method. As prepared Au/SiOx films were rapid thermal annealed at constant temperature of 800 °C for different annealing times from 30 to 120 s. The use of tungsten filament for Au evaporation allowed the effective reduction of the silicon content. Depth profiling analysis confirmed the embedded in structure of Au/SiOx film. FESEM, UV/VIS/NIR and PL spectroscopy were utilized to study the structural and optical properties of annealed Au/SiOx film for different times. Embedded Au NPs diffused towards the surface of SiOx film agglomerate and increased in size with an increase in annealing time. Localized surface plasmon resonance (LSPR) peak induced by Au NPs in SiOx, which is dependent on annealing time, was clearly observed in optical spectra. Intensity and position of the PL peak located at 580 nm experienced a decrease and red-shift, as annealing time increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号