首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Ba0.5Sr0.5TiO3(BST)/Bi1.5Zn1.0Nb1.5O7(BZN) multilayer thin films were prepared on Pt/Ti/SiO2/Si substrates by a sol-gel method. The structures and morphologies of BST/BZN multilayer thin films were analyzed by X-ray diffraction (XRD) and field-emission scanning electron microscope. The XRD results showed that the perovskite BST and the cubic pyrochlore BZN phases can be observed in the multilayer thin films annealed at 700 °C and 750 °C. The surface of the multilayer thin films annealed at 750 °C was smooth and crack-free. The BST/BZN multilayer thin films annealed at 750 °C exhibited a medium dielectric constant of around 147, a low loss tangent of 0.0034, and a relative tunability of 12% measured with dc bias field of 580 kV/cm at 10 kHz.  相似文献   

2.
Bi1.5Zn0.5Nb0.5Ti1.5O7 (BZNT) thin films with different thicknesses as cover layers were deposited on the Ba0.6Sr0.4TiO3 (BST) thin films on the Pt/Ti/SiO2/Si substrates by radio frequency magnetron sputtering method. The microstructure, surface morphology, dielectric and tunable properties of BST/BZNT heterogeneous bilayered films were investigated as a function of the thickness of BZNT films and the effect of BZNT films on the asymmetric electrical properties of BST/BZNT bilayered films was discussed. It was found that BZNT cover layer significantly improved the leakage current and the dielectric loss, and the dielectric constant and tunability of BST/BZNT bilayered thin films simultaneously decreased with the increasing thickness of BZNT films. The BST/BZNT bilayered thin film with a 50 nm BZNT cover layer gave the largest figure of merit (FOM) of 33.48 with the upper tunability of 55.38%. The asymmetric electrical behavior of BST/BZNT bilayered films is probably related to an internal electric field caused by built-in voltages at Pt/BST and BZNT/Au interfaces.  相似文献   

3.
Large area Ba1 − xSrxTiO3 (BST) thin films with x = 0.4 or x = 0.5 were deposited on 75 mm diameter Si wafers in a pulsed laser deposition (PLD) chamber enabling full-wafer device fabrication using standard lithography. The deposition conditions were re-optimized for large PLD chambers to obtain uniform film thickness, grain size, crystal structure, orientation, and dielectric properties of BST films. X-ray diffraction and microstructural analyses on the BST films grown on Pt/Au/Ti electrodes deposited on SiO2/Si wafers revealed films with (110) preferred orientation with a grain size < 100 nm. An area map of the thickness and crystal orientation of a BST film deposited on SiO2/Si wafer also showed (110) preferred orientation with a film thickness variation < 6%. Large area BST films were found to have a high dielectric tunability of 76% at an electric field of 400 kV/cm and dielectric loss tangent below 0.03 at microwave frequencies up to 20 GHz and a commutation quality factor of ~ 4200.  相似文献   

4.
In microwave tunable devices, one of the major challenges encountered is the simultaneous minimization of the material's dielectric loss and maximization of dielectric tunability. In this work, Ba0.6Sr0.4TiO3 thin film with the thickness of 300 nm was deposited on Pt/SiO2/Si substrates using radio-frequency magnetron sputtering technique, and its dielectric properties were investigated. Due to the high temperature annealing process at substrate temperature of 600 °C, well-crystallized Ba0.6Sr0.4TiO3 film was deposited. The dielectric constant and dielectric loss of the film at 100 kHz are 300 and 0.033, respectively. Due to the good crystallinity of the Ba0.6Sr0.4TiO3 films deposited by radio-frequency magnetron sputtering, high dielectric tunability up to 38.3% is achieved at a low voltage of 4.5 V.  相似文献   

5.
Ba0.65Sr0.35TiO3 (BST) thin films were deposited on Pt/Ti/SiO2/Si substrates by radio frequency magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) depth profiling data show that each element component of the BST film possesses a uniform distribution from the outermost surface to subsurface, but obvious Ti-rich is present to BST/Pt interface because Ti4+ cations are partially reduced to form amorphous oxides such as TiOx (x < 2). Based on the measurement of XPS valence band spectrum, an energy band diagram in the vicinity of BST/Pt interface is proposed. Dielectric property measurements at 1 MHz reveal that dielectric constant and loss tangent are 323 and 0.0095 with no bias, while 260 and 0.0284 with direct current bias of 25 V; furthermore, tunability and figure of merit are calculated to be 19.51% and 20.54, respectively. The leakage current density through the BST film is about 8.96 × 10− 7 A/cm2 at 1.23 V and lower than 5.66 × 10− 6 A/cm2 at 2.05 V as well as breakdown strength is above 3.01 × 105 V/cm.  相似文献   

6.
In this study, we tried to lower the sintering temperature of Ba0.6Sr0.4TiO3 (BST) ceramics by several kinds of adding methods of Bi2O3, CuO and CuBi2O4 additives. The effects of different adding methods on the microstructures and the dielectric properties of BST ceramics have been studied. In the all additive systems, the single addition of CuBi2O4 was the most effective way for lowering the sintering temperature of BST. When CuBi2O4 of 0.6 mol% was mixed with starting BST powders and sintered at 1100 °C, the derived ceramics demonstrated dense microstructure with a low dielectric constant (? = 4240), low dielectric loss (tan δ = 0.0058), high tunability (Tun = 38.3%) and high Q value (Q = 251). It was noteworthy that the sintering temperature was significantly lowered by 350 °C compared with no-additive system, and the derived ceramics maintained the excellent microwave dielectric properties corresponding to pure BST.  相似文献   

7.
Ternary (Ba0.6Sr0.4)1−xCaxTiO3 (BSCT) (x = 0, 0.1, 0.2, 0.3 and 0.4) thin films with thickness of around 500 nm were prepared on Pt(111)/TiO2/SiO2/Si substrates by sol-gel methods. BSCT forms the complete solid solutions in a single cubic perovskite structure. The lattice constant, dielectric constant, tanδ and tunability of BSCT decrease, whereas the temperature stability of dielectric properties increases with increasing the Ca concentration. From 25 to 100 °C, the decrease of tunability is about 11% for BSCT with 40 at.% of Ca. BSCT thin films exhibit the comparable tunability, low loss and enhanced temperature stability.  相似文献   

8.
Compositionally graded (Ba1−xSrx)TiO3 (BST) thin films, with x decreasing from 0.3 to 0, were deposited on Pt/Ti/SiO2/Si and Ru/SiO2/Si substrates by radio frequency magnetron sputtering technology. The microstructure and dielectric properties of the graded BST thin films were investigated. It was found that the films on Ru electrode have better crystallization, and that RuO2 is present between the Ru bottom electrode and the graded BST thin films by X-ray diffraction and SEM analysis. Dielectric measurement reveals that the graded BST thin films deposited on Ru bottom electrode have higher dielectric constant and tunability. The enhanced dielectric behavior is attributed to better crystallization as well as smaller space charge capacitance width and the formation of RuO2 that is more compatible with the BST films. The graded BST films on Ru electrode show higher leakage current due to lower barrier height and rougher surface of bottom electrode.  相似文献   

9.
Three types of Ba0.5Sr0.5TiO3 (BST) thin film parallel plate varactor with different bottom electrodes were fabricated. The bottom electrodes of three types of varactor were perovskite conducting oxide La0.7Sr0.3MnO3 (LSMO), Pt and Au, respectively. Dielectric properties of the BST thin films were characterized in the frequency range from 10 MHz to 15 GHz. The microstructure of the BST thin films was investigated by X-ray diffraction and scanning electron microscope. The microstructural analysis shows that the BST thin films grown on LSMO and Pt bottom electrodes are polycrystalline textured with columnar grains. Dielectric measurement indicates that the BST thin film grown on LSMO bottom electrode has a maximum dielectric constant and a little higher loss tangent.  相似文献   

10.
The Ba0.5Sr0.5TiO3 (BST) thin film with the thickness of 400 nm deposited from powder target is prepared by the radio-frequency magnetron sputtering technique. The deposition rate of BST film is estimated to be 45 nm/min, which is very fast for ferroelectric materials. The dielectric properties of the as-prepared BST thin film are demonstrated. High dielectric tunability up to 42.7% and low dielectric loss small to 0.01 are achieved at a low applied voltage of 5 V. The results demonstrate that the RF magnetron sputtering from powder target is a versatile, novel technique for the deposition of high-quality ferroelectric thin films.  相似文献   

11.
Barium strontium titanate (Ba1?x Sr x )TiO3 (BST) thin films were deposited on Pt, Ru, RuO2, and Pt/RuO2 electrodes by radio frequency magnetron sputtering. The interfacial structure characteristic of the BST films deposited on various electrodes was investigated. X-ray photoelectron spectroscopy investigations showed that the interfacial diffusion layer in BST/Pt and BST/Ru are approximately 6 and 10 nm, respectively. The BST films are short of Ba and O elements comparing with the stoichiometry Ba0.65Sr0.35TiO3 in the interface region. Dielectric measurement of the BST films with thickness ranging from 70 to 400 nm revealed that the BST films deposited on Pt and Pt/RuO2 bottom electrodes have similar dielectric property, the BST films deposited on Ru have the highest bulk dielectric constant, and the thickness dependence of dielectric constant on the BST film deposited on RuO2 electrode can be neglected. The interfacial layer dielectric constant of BST films deposited on Pt and Ru electrodes are estimated to be about 34.5 and 157.1, respectively. The effect of interfacial dead-layer on the dielectric constant could be eliminated through selecting appropriate bottom electrodes.  相似文献   

12.
BST thin films have been investigated as potential candidates for use in frequency agile microwave circuit devices. Stoichiometric (Ba1 − xSrx)TiO3 (BST) thin films have been prepared on Pt/SiO2/Si substrates using sol-gel method. The BST films were characterized by X-ray fluorescence (XRF) spectroscopy analysis, X-ray diffraction (XRD), scanning electron microscope (SEM) and electrical measurements. The relationships of processing parameters, microstructures, and dielectric properties are discussed. The results show that the films exhibit pure perovskite phase through rapid thermal anneal at 700 °C and their grain sizes are about 20-40 nm. The dielectric constants of BST5, BST10, BST15 and BST20 are 323, 355, 382 and 405, respectively, at 80 kHz.  相似文献   

13.
《Thin solid films》2002,402(1-2):307-310
In this work, the growth and study of dielectric properties of Ba0.7Sr0.3TiO3 (BST) thin films grown on thin Bi layer coated Pt(111)/Ti/SiO2/Si substrates, depending on thin Bi layer thickness is reported. The BST thin film (thickness 180 nm) grown on 10-nm-thick Bi layer exhibited more improved structural and dielectric properties than that grown on bare Pt(111)/Ti/SiO2/Si substrate. The 10-nm-thick Bi layer in optimum configuration was effective for the grain growth of BST phase and suppressed the formation of the oxygen-deficient layer at the interface between the BST thin film and bottom electrode, which resulted in an increase in dielectric constant and a decrease in leakage current density of the Pt/BST thin film/Pt capacitor.  相似文献   

14.
(Ba1 − x Sr x )TiO3 (BST) thin films were deposited on Pt/Ti/SiO2/Si and YSZ/Pt/Ti/SiO2/Si substrates by radio frequency (RF) magnetron sputtering. The influence of YSZ interlayer on microstructures and dielectric properties of BST thin films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy and dielectric frequency spectra. It was found that the preferred orientation of BST thin films could be tailored by insertion of YSZ interlayer and adjusting the thickness of YSZ interlayer. The BST thin films deposited on YSZ interlayer exhibited a more compact and uniform grain structure than that deposited directly on Pt electrode. Dielectric measurement revealed that the BST thin films deposited on 10 nm YSZ interlayer have the largest dielectric constant and a low dielectric loss tangent. The enhanced dielectric behavior is mainly attributed to the YSZ interlayer which serves as an excellent seeding layer to enhance the crystallization of subsequent BST films layer, and a smaller thermal stress field built up at the interface between YSZ interlayer and BST film layer.  相似文献   

15.
BaxSr1−xTiO3 (BST) films are fabricated by sol-gel and RF (radio frequency) magnetron sputtering method. A buffer layer with columnar grains by sol-gel method is introduced to improve the dielectric anomaly in BST films. We find that the presence of buffer layer can increase the differential dielectric constant against temperature in sol-gel derived BST films while not so with sputtered films. We explain this by an ‘expanded layer thickness model’ and an unstable crystallized surface, respectively. The obtained (dε/ε) dT is up to 6% around 11 °C by the sol-gel method.  相似文献   

16.
L.L. Jiang  Q. Li 《Vacuum》2009,83(6):1018-2804
(Ba0.90Ca0.10)(Zr0.25Ti0.75)O3 (BCZT) thin films were grown on Pt/Ti/SiO2/Si substrates without and with a CaRuO3 (CRO) buffer layer using pulsed laser deposition (PLD). The structure and surface morphology of the films have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). At room temperature and 1 MHz, the dependence of dielectric constant and tunability of the films with electric field were investigated; the dielectric constant and tunability are 725 and 47.0%, 877 and 50.4%, respectively, for the BCZT film on Pt/Ti/SiO2/Si substrates without and with the CRO buffer layer at 400 kV/cm. The tunability of the BCZT/CRO heterostructure thin films on Pt/Ti/SiO2/Si substrates was higher than that of the BCZT thin films on Pt/Ti/SiO2/Si substrates. The high constant likely results from the oxide electrode (CRO).  相似文献   

17.
Phase compositions, microstructure and microwave dielectric properties, of BaWO4 (BW)-Ba0.4Sr0.6TiO3 (BST) composite ceramics, prepared by the traditional solid-state route, were systematically characterized. Meanwhile, mechanism of dielectric tunability of those materials was discussed. Dielectric properties of the BW-BST composites at a DC bias field near the phase transition temperature could be interpreted by using Johnson's phenomenological equation. The sample with x = 0.60 exhibited a tunability of 29.5%, a dielectric permittivity of 192 and a Q value of 231 (at 2.700 GHz), which make it a promising candidate for applications in electrically tunable microwave devices.  相似文献   

18.
Kaibin Ruan 《Thin solid films》2008,516(16):5248-5251
(Bi3.2La0.4Nd0.4)Ti3O12 (BLNT) thin films were prepared on Pt/Ti/SiO2/Si substrates by using chemical solution deposition technique, and the effects of annealing temperatures in the range of 550-750 °C on structure and electrical properties of the thin films were investigated. X-ray diffraction analysis shows that the thin films have a bismuth-layered perovskite structure with preferred (117) orientation. The surface morphology observation by field-emission scanning electron microscopy confirms that films are dense and smooth with uniformly distributed grains. The grain size of the thin films increases with increasing annealing temperature; meanwhile, the structural distortion of the thin films also increases. It was demonstrated that the thin films show good electrical properties. The dielectric constant and dielectric loss are 191 and 0.028, respectively, at 10 kHz for the thin film annealed at 600 °C, and the 2Pr value of the thin film annealed at 700 °C is 20.5 μC/cm2 at an electric field of 500 kV/cm.  相似文献   

19.
Bi1.5Zn1.0Nb1.5O7 (BZN)/Ba0.5Sr0.5TiO3 (BST) thin films were prepared on Pt/Ti-coated sapphire substrates by radio frequency magnetron sputtering. The specific relationship between the dielectric properties and the thickness ratio of the BZN thickness to the BST thickness was investigated. The presence of BZN films effectively reduced the dielectric loss of the thin films. The thickness-ratio-dependent dielectric constant and dielectric loss behaviors were in good accordance with the simulation results based on the series connection theory. The optimum thickness ratio was determined to be around 0.5, exhibiting a maximum commutation quality factor of about 16,000. The built-in electric field at the region near the BZN–BST interface may be responsible for the asymmetric characteristic of the electric-field-dependent dielectric properties of the BZN/BST thin films.  相似文献   

20.
A modified sol-gel method was used to fabricate (Pb0.25Bax Sr0.75−x)TiO3 (PBST) thin films with x = 0.05,0.1,0.15 and 0.2 on Pt/TiO2/SiO2/Si substrate. The structure, surface morphology, dielectric and tunable properties of PBST thin films were investigated as a function of barium content (x). X-ray diffraction and scanning electron microscopy analysis showed that we could get pure PBST perovskite phase and relative fine density thin films with smooth surface. It was found that the crystal lattice constant, grain size, room temperature dielectric constant, dielectric loss and tunability of Ba solutionizing PST thin films increased with the increase in Ba content. For (Pb0.25Ba0.2Sr0.55)TiO3 thin film, it had the highest dielectric constant of 1390 and the largest tunability of 80.6%. The figure of merit parameter reached a maximal value of 28.9 corresponding to the (Pb0.25Ba0.05 Sr0.7)TiO3 thin film, whose dielectric constant, dielectric loss and tunability measured at 1 MHz were 627, 0.024 and 69.4%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号