首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Adhikari 《Thin solid films》2010,518(19):5421-5425
Thermal evaporation technique was employed to deposit pristine and iodine doped polyaniline (PANI) thin films on glass substrates. PANI was synthesized by the chemical oxidation method. Iodine doping was carried out by evaporation. The polymer synthesized was characterized by Thermo Gravimetric Analysis (TGA), Fourier Transform Infra Red (FTIR) and Ultraviolet-Visible (UV-VIS) spectroscopy. The evaporation temperature was optimized from TGA measurements. The thin film was deposited in vacuum at 1.33 × 10− 4 Pa by thermal evaporation of PANI. The polymer film was characterized by FTIR and UV-VIS spectroscopy. The surface morphology of the films was studied by field emission scanning electron microscopy. The resistivity was measured by van der Pauw technique. The conductivity of the doped films was seen to increase with the iodine concentration and many fold increase in conductivity was observed in comparison to the pristine films. The increase in conductivity is due to the generation of polaron band in the band gap upon iodine doping.  相似文献   

2.
Improved thermoelectric performance of highly-oriented nanocrystalline bismuth antimony telluride thin films is described. The thin films are deposited by a flash evaporation method, followed by annealing in hydrogen. By optimizing the annealing conditions, the resulting thin films exhibit almost perfect orientation with the c-axis normal to the substrate, and are composed of nano-sized grains with an average grain size of 150 nm. The in-plane electrical conductivity and Seebeck coefficient were measured at room temperature. The cross-plane thermal conductivity of the thin films was measured by a 3ω method, and the in-plane thermal conductivity was evaluated by using an anisotropic factor of thermal conductivity based on a single crystal bulk alloy with almost the same composition and carrier concentration. The measured cross-plane thermal conductivity is 0.56 W/(m K), and the in-plane thermal conductivity is evaluated to be 1.05 W/(m K). Finally, the in-plane power factor and figure-of-merit, ZT, of the thin films are 35.6 μW/(cm K2) and 1.0 at 300 K, respectively.  相似文献   

3.
The solution of Poly(3-hexylthiophene) (P3HT) in chloroform is generally adopted for fabricating P3HT thin films or nanofibers. In this work, 4 regular P3HT solution weight percentages, 2, 3, 5 and 7 wt.%, are compounded to fabricate P3HT thin films by using spin-coating technique. Raman spectrum study suggests that the density of the P3HT thin films varies with different P3HT solution weight percentages while X-ray diffraction analysis reveals that the crystal structures are identical for all P3HT thin films. The transient electrothermal technique is employed to measure the thermal diffusivity of the P3HT thin films and an efficient temperature-resistance calibration is performed to cooperatively study the thermal conductivity. When the P3HT weight percentage changes from 2% to 7%, the thermal conductivity varies from 1.29 W/m·K to 1.67 W/m·K and the thermal diffusivity goes down from around 10− 6 m2/s to 5 × 10− 7 m2/s. The density of P3HT thin films is also determined from the experimental data. The relationship between the density and thermophysical properties clearly demonstrates that the thermal conductivity increases with density while the thermal diffusivity decreases.  相似文献   

4.
We report the study of dielectric properties of amorphous semiconducting YBCO thin films measured in a broad frequency range, from 40 Hz to 2 GHz and in the 210 to 430 K temperature range, using a coaxial discontinuity technique. At all temperatures, dielectric permittivity and conductivity spectra exhibit typical features of dielectric relaxation processes. A first relaxation at low frequency (300 Hz-2 kHz), observed only at high temperature, might be attributed to interfacial effects. Polarization in the grains of the YBCO thin films could lead to the second relaxation observed at higher frequency (800 Hz-660 kHz). The relaxation frequencies increase with temperature and follow a thermally activated behavior of the Arrhenius-type. Optical near-infrared response of YBCO bolometers exhibits a corner frequency around 40 kHz. Above this frequency, the thermal diffusion is localized inside the YBCO thin film. This frequency is in good agreement with the relaxation frequency attributed to YBCO grains in the thin film, i.e. around 40 kHz at 300 K.  相似文献   

5.
Thermal conductivity trends in a “chameleon coating” thin film were characterized with a time-domain thermoreflectance (TDTR) technique. A yttria-stabilized zirconia (YSZ)-based nanocomposite material containing ∼21 vol.% silver (Ag) was employed for this study. The thermal conductivity (k) of the as-deposited composite film was measured with TDTR and found to have a value of 7.4 ± 1.4 W m−1 K−1. The film was then annealed at 500 °C for 1 h to stimulate Ag flow from within the composite to the surface via diffusion. The Ag that coalesced on the surface during annealing was removed to expose the underlying porous YSZ matrix, and the sample was reexamined with the TDTR technique. The thermal conductivity of the porous nanocomposite YSZ material was then measured to be 1.6 ± 0.2 W m−1 K−1, which is significantly lower than a fully dense control sample of pure nanocrystalline YSZ (2.0 ± 0.1 W m−1 K−1). The annealed film displayed a 20% reduction in thermal conductivity as compared to the control sample and a 4–5-fold reduction in thermal conductivity as compared to the as-deposited material. The experiments demonstrate temperature triggering of a composite material, resulting in self-modifying thermal conductivity and diffusion-controlled porosity. These aspects can be used to enhance or restrict thermal transport (i.e., a thermal switch). The applicability of the TDTR technique to measurements of thin, nanoporous film materials is also demonstrated.  相似文献   

6.
(001) SrRuO3 (SRO), (001) CaRuO3 (CRO) and (205) BaRuO3 (BRO) thin films were epitaxially grown on (001) LaAlO3 substrates by laser ablation, and the effect of lattice matching on the microstructure and electrical conductivity was investigated. (001) SRO and (001) CRO thin films had a terrace with orthogonal step structure, whereas (205) BRO thin film had an orthogonal structure with tetragonal grains. Epitaxial thin films showed metallic conduction, and the (001) CRO thin films exhibited the highest electrical conductivity, i.e. 1.5 × 105 S m− 1, among the (001) SRO, (001) CRO and (205) BRO thin films. The smaller misfit between thin film and substrate could be associated with the higher electrical conductivity.  相似文献   

7.
Gas-phase phosphorous and boron doping of hydrogenated nanocrystalline thin films deposited by HWCVD at a substrate temperature of 150 °C on flexible-plastic (polyethylene naphthalate, polyimide) and rigid-glass substrates is reported. The influence of the substrate, hydrogen dilution, dopant concentration and film thickness on the structural and electrical properties of the films was investigated. The dark conductivity of B- and P-doped films (σd = 2.8 S/cm and 4.7 S/cm, respectively) deposited on plastic was found to be somewhat higher than that found in similar films deposited on glass. n- and p-type films with thickness below ∼ 50 nm have values of crystalline fraction, activation energy and dark conductivity typical of doped hydrogenated amorphous silicon. This effect is observed both on glass and on plastic substrates.  相似文献   

8.
CuGaSe2 thin films have been prepared by one-step electrodeposition and rapid thermal annealing process. According to composition and morphology analysis, deposition potential of − 0.6 V vs. SCE is considered to be optimum for electrodeposition. From the X-ray diffraction and Raman studies, the as-deposited film exhibits poor crystallinity without the evidence of CuGaSe2 or other Ga-containing phases, while the rapid thermal annealing-treated film shows chalcopyrite structure CuGaSe2 phase containing MoSe2 phase between the Mo substrate and the absorber and minor second phase Cu2 − xSe. The obtained CuGaSe2 thin film has a band gap of about 1.68 eV and p-type conductivity.  相似文献   

9.
Tin doped indium oxide (ITO) thin films with composition of 9.42 wt% SnO2 and 89.75 wt% In2O3, and impurities balanced on glass substrates at room temperature have been prepared by electron beam evaporation technique and then were annealed in air at different temperatures from 350 to 550 °C for 1 h. XRD pattern showed that increasing annealing temperature increased the crystallinity of thin films and at 550 °C high quality crystalline thin films with grain size of about 37 nm were obtained. Conductivity of ITO thin films was increased by increasing annealing temperature and conductivity obtained results in 350-550 °C temperature range were also excellently fitted in both Arrhenius-type and Davis-Mott variable-range hopping conductivity models. The UV-vis transmittance spectra were also confirmed that the annealing temperature has significant effect on the transparency of thin films. The highest transparency over the visible wavelength region of spectrum (93%) obtained at 550 °C on annealing temperature. It should be noted that this thin film was deposited on substrate at room temperature. This result obtained is equivalent with those values that have already been reported but with high-level (20 wt%) tin doped indium oxide thin films and also at 350 °C substrate temperature. The allowed direct band gap at the temperature range 350-550 °C was estimated to be in the range 3.85-3.97 eV. Band gap widening with an increase in annealing temperature was observed and is explained on the basis of Burstein-Moss shift. A comparison between the electron beam evaporation and other deposition techniques showed that the better figure of merit value can be obtained by the former technique. At the end we have compared our results with other techniques.  相似文献   

10.
Mei Li  Gaoquan Shi 《Thin solid films》2008,516(12):3836-3840
Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. σrt ∼ 20.5  s/cm and can be driven to bend during redox processes in 1.0  M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90°/s at a driving potential of 0.8  V (vs. Ag/AgCl).  相似文献   

11.
In the present research, spray pyrolysis technique is employed to synthesize 10%Gd-doped ceria (GDC) thin films on ceramic substrates with an intention to use the "film/substrate" structure in solid oxide fuel cells. GDC films deposited on GDC substrate showed enhanced crystallite formation. In case of NiO-GDC composite substrate, the thickness of film was higher (~ 13 μm) as compared to the film thickness on GDC substrate (~ 2 μm). The relative density of the films deposited on both the substrates was of the order of 95%. The impedance measurements revealed that ionic conductivity of GDC/NiO-GDC structure was of the order of 0.10 S/cm at 500 °C, which is a desirable property for its prospective application.  相似文献   

12.
We investigated the morphological, structural, electronic, and transport properties of pentacene thin films grown by vacuum thermal evaporation on different inert substrates at room temperature. The results of our atomic force microscopy (AFM), X-ray diffraction and scanning tunnelling microscopy (STM) analysis show a structure in the so called “thin film phase” with 1-2 μm sized grains. Atomic terraces are clearly evidenced with AFM and give an inter-planar spacing of 1.54 nm corresponding to the (001) distance. The Scanning Tunneling Spectroscopy measurements show an HOMO-LUMO gap of 2.2 eV. After vacuum thermal evaporation on patterned substrates with different inter-electrodes distances, we have performed in situ measurements of the electrical response of such thin films. We found for these films a resistivity of ρ = 4.7 ± 0.2 · 104 Ω m, that is an order of magnitude lower than the value reported to date in literature for single crystals of pentacene. This value is not affected by the presence of grain boundaries. The resistivity is further reduced by a factor 8.9 ± 0.7, 14 ± 1, 2.3 ± 0.3 upon exposure to oxygen, nitrogen and ambient air, respectively. In addition density functional theory calculations have been performed to investigate the electronic structure of pentacene in this specific phase, focusing on the effects on the relevant electronic properties of the relative orientation of the molecules within the crystalline unit cell, so far experimentally unknown. Our results show that the energy bandwidth and band-gap are crucially affected by the molecular stacking. Furthermore, by comparing our theoretical spectra with the scanning tunneling spectroscopy (STS) measurements, we propose a molecular arrangement that gives a good agreement with experiments as far as the relevant orbitals are concerned. For this polymorph, we find a HOMO and LUMO bandwidth of ≈ 0.7 eV and ≈ 0.8 eV, respectively, which are significantly larger than those obtained for the pentacene bulk-phase and are consistent with the larger conductivity experimentally observed in pentacene thin films.  相似文献   

13.
This paper describes at first the present status of solar cell efficiencies prepared by Hot Wire CVD (HW-CVD), and then preparation techniques of μc-3C(cubic)-SiC developed for innovative solar cell applications by using HW-CVD method are presented. For preparing μc-3C-SiC, monomethylsilane (MMS) and hydrogen were used for reactant gases. The high conductivity of 5 S/cm could be achieved for N doped n-type μc-3C-SiC. For p-type, as-grown Al-doped μc-3C-SiC films showed a relatively high resistivity, but on thermal annealing, the conductivity increased to the level of 1 × 10− 2 S/cm. Monomethylgermane (MMG) and H2 were used to prepare μc-GeC thin films. μc-GeC thin films with a carbon composition of about 7-8% showed a clear shift of absorption coefficient spectra by 0.44 eV, when compared to crystalline Ge. The pin solar cell structures in which all p,i,n layers consist of μc-SiC have been prepared for the first time. It was found that μc-3C-SiC and μc-GeC are the promising candidates as the next generation thin-film solar cell materials, but at present, the film quality is strictly limited by the residual impurity concentration of filament material Re.  相似文献   

14.
We report on the growth of p-type ZnO thin films with improved stability on various substrates and study the photoconductive property of the p-type ZnO films. The nitrogen doped ZnO (N:ZnO) thin films were grown on Si, quartz and alumina substrates by radio frequency magnetron sputtering followed by thermal annealing. Structural studies show that the N:ZnO films possess high crystallinity with c-axis orientation. The as-grown films possess higher lattice constants compared to the undoped films. Besides the high crystallinity, the Raman spectra show clear evidence of nitrogen incorporation in the doped ZnO lattice. A strong UV photoluminescence emission at ~ 380 nm is observed from all the N:ZnO thin films. Prior to post-deposition annealing, p-type conductivity was found to be unstable at room temperature. Post-growth annealing of N:ZnO film on Si substrate shows a relatively stable p-type ZnO with room temperature resistivity of 0.2 Ω cm, Hall mobility of 58 cm2/V s and hole concentration of 1.95 × 1017 cm− 3. A homo-junction p-n diode fabricated on the annealed p-type ZnO layer showed rectification behavior in the current-voltage characteristics demonstrating the p-type conduction of the doped layer. Doped ZnO films (annealed) show more than two orders of magnitude enhancement in the photoconductivity as compared to that of the undoped film. The transient photoconductivity measurement with UV light illumination on the doped ZnO film shows a slow photoresponse with bi-exponential growth and bi-exponential decay behaviors. Mechanism of improved photoconductivity and slow photoresponse is discussed based on high mobility of carriers and photodesorption of oxygen molecules in the N:ZnO film, respectively.  相似文献   

15.
High quality polycrystalline silicon (poly-Si) thin films without Si islands were prepared by using aluminum-induced crystallization on glass substrates. Al and amorphous silicon films were deposited by vacuum thermal evaporation and radio frequency magnetron sputtering, respectively. The samples were annealed at 500 °C for 7 h and then Al was removed by wet etching. Scanning electron microscopy shows that there are two layers in the thin films. After the upper layer was peeled off, the lower poly-Si thin film was found to be of high crystalline quality. It presented a Raman peak at 521 cm− 1 with full width at a half maximum of 5.23 cm− 1, which is similar to c-Si wafer.  相似文献   

16.
ITO thin films deposited by advanced pulsed laser deposition   总被引:1,自引:0,他引:1  
Indium tin oxide thin films were deposited by computer assisted advanced PLD method in order to obtain transparent, conductive and homogeneous films on a large area. The films were deposited on glass substrates. We studied the influence of the temperature (room temperature (RT)-180 °C), pressure (1-6 × 10− 2 Torr), laser fluence (1-4 J/cm2) and wavelength (266-355 nm) on the film properties. The deposition rate, roughness, film structure, optical transmission, electrical conductivity measurements were done. We deposited uniform ITO thin films (thickness 100-600 nm, roughness 5-10 nm) between RT and 180 °C on a large area (5 × 5 cm2). The films have electrical resistivity of 8 × 10− 4 Ω cm at RT, 5 × 10− 4 Ω cm at 180 °C and an optical transmission in the visible range, around 89%.  相似文献   

17.
In this study, nanocolumnar zinc oxide thin films were catalyst-free electrodeposited directly on n-Si and p-Si substrates, what makes an important junction for optoelectronic devices. We demonstrate that ZnO thin films can be grown on Si at low cathodic potential by electrochemical synthesis. The scanning electron microscopy SEM showed that the ZnO thin films consist of nanocolumns with radius of about 150 nm on n-Si and 200 nm on p-Si substrates, possess uniform size distribution and fully covers surfaces. X-ray diffraction (XRD) measurements show that the films are crystalline material and are preferably grown along (0 0 2) direction. The impact of thermal annealing in the temperature range of 150-800 °C on ZnO film properties has been carried out. Low-temperature photoluminescence (PL) spectra of the as-prepared ZnO/Si samples show the extremely high intensity of the near bandgap luminescence along with the absence of visible emission. The optical quality of ZnO thin films was improved after post-deposition thermal treatment at 150 °C and 400 °C in our experiments, however, the luminescence intensity was found to decrease at higher annealing temperatures (800 °C). The obtained results indicate that electrodeposition is an efficient low-temperature technique for the growth of high-quality and crystallographically oriented ZnO thin films on n-Si and p-Si substrates for device applications.  相似文献   

18.
The bulge test was used to measure the mechanical properties of polymer thin films with thickness in the range of 77 nm to 352 nm. The mechanical properties of polymeric thin films were extracted by comparing differences between curves of load vs. bulge height obtained from composite film configurations with and without the polymer layer. Both square and long rectangular windows were used to obtain the Poisson ratio and Young's Modulus. Composite film with 230 nm silicon nitride layer and 30 nm Al layer has a composite Poisson ratio of 0.29 and a Young's Modulus of 234 ± 0.8 GPa. The Poisson ratio extracted for a 352 nm Poly(methyl methacrylate)-based thermoplastic polymeric thin film was 0.39. The Young's Modulus extracted for the 77 nm thick polymeric film is 4.9 ± 0.8 GPa and for the 352 nm thick film is 5.8 ± 0.2 GPa. In the thickness range investigated, no clear thickness dependence of the Young's modulus was observed using the Bulge test.  相似文献   

19.
SmS optical thin films were deposited on the surface of ITO glass with an electrodeposition method using aqueous solution containing SmCl3·6H2O and Na2S2O3·5H2O. The phase composition was analyzed by X-ray diffraction (XRD) and microstructure of the film was characterized by atomic force microscope (AFM). It is showed that SmS thin film could be obtained in the solution with n(Sm)/n(S) = 1:4, pH = 4.0 and annealing in Ar atmosphere at 200 °C for 0.5 h. The as-prepared thin films on the ITO glass exhibit a dense microstructure. The band gap of the thin film has been found to be 3.6 eV.  相似文献   

20.
Indium tin oxide (ITO) films were deposited on soda lime glass and polyimide substrates using an innovative process known as High Target Utilisation Sputtering (HiTUS). The influence of the oxygen flow rate, substrate temperature and sputtering pressure, on the electrical, optical and thermal stability properties of the films was investigated. High substrate temperature, medium oxygen flow rate and moderate pressure gave the best compromise of low resistivity and high transmittance. The lowest resistivity was 1.6 × 10− 4 Ω cm on glass while that on the polyimide was 1.9 × 10− 4 Ω cm. Substrate temperatures above 100 °C were required to obtain visible light transmittance exceeding 85% for ITO films on glass. The thermal stability of the films was mainly influenced by the oxygen flow rate and thus the initial degree of oxidation. The film resistivity was either unaffected or reduced after heating in vacuum but generally increased for oxygen deficient films when heated in air. The greatest increase in transmittance of oxygen deficient films occurred for heat treatment in air while that of the highly oxidised films was largely unaffected by heating in both media. This study has demonstrated the potential of HiTUS as a favourable deposition method for high quality ITO suitable for use in thin film solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号