首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The Ca2+-ATPase is an integral transmembrane Ca2+ pump of the sarcoplasmic reticulum (SR). Crystallization of the cytoplasmic surface ATPase molecules of isolated scallop SR vesicles was studied at various calcium concentrations by negative stain electron microscopy. In the absence of ATP, round SR vesicles displaying an assembly of small crystalline patches of ATPase molecules were observed at 18 µM [Ca2+]. These partly transformed into tightly elongated vesicles containing ATPase crystalline arrays at low [Ca2+] (≤1.3 µM). The arrays were classified as ‘’tetramer’’, “two-rail” (like a railroad) and ‘’monomer’’. Their crystallinity was low, and they were unstable. In the presence of ATP (5 mM) at a low [Ca2+] of ~0.002 µM, “two-rail” arrays of high crystallinity appeared more frequently in the tightly elongated vesicles and the distinct tetramer arrays disappeared. During prolonged (~2.5 h) incubation, ATP was consumed and tetramer arrays reappeared. A specific ATPase inhibitor, thapsigargin, prevented both crystal formation and vesicle elongation in the presence of ATP. Together with the second part of this study, these data suggest that the ATPase forms tetramer units and longer tetramer crystalline arrays to elongate SR vesicles, and that the arrays transform into more stable “two-rail” forms in the presence of ATP at low [Ca2+].  相似文献   

2.
The sarco(endo)plasmic reticulum Ca2+−ATPase (SERCA) hydrolyzes ATP to transport Ca2+ from the cytoplasm to the sarcoplasmic reticulum (SR) lumen, thereby inducing muscle relaxation. Dysfunctional SERCA has been related to various diseases. The identification of small-molecule drugs that can activate SERCA may offer a therapeutic approach to treat pathologies connected with SERCA malfunction. Herein, we propose a method to study the mechanism of interaction between SERCA and novel SERCA activators, i. e. CDN1163, using a solid supported membrane (SSM) biosensing approach. Native SR vesicles or reconstituted proteoliposomes containing SERCA were adsorbed on the SSM and activated by ATP concentration jumps. We observed that CDN1163 reversibly interacts with SERCA and enhances ATP-dependent Ca2+ translocation. The concentration dependence of the CDN1163 effect provided an EC50=6.0±0.3 μM. CDN1163 was shown to act directly on SERCA and to exert its stimulatory effect under physiological Ca2+ concentrations. These results suggest that CDN1163 interaction with SERCA can promote a protein conformational state that favors Ca2+ release into the SR lumen.  相似文献   

3.
Ryanodine receptor (RyR) Ca2+‐release channels are essential for contraction in skeletal and cardiac muscle and are prime targets for modification of contraction in disorders that affect either the skeletal or heart musculature. We designed and synthesized a number of compounds with structures based on a naturally occurring peptide ( A peptides) that modifies the activity of RyRs. In total, 34 compounds belonging to eight different classes were prepared. The compounds were screened for their ability to enhance Ca2+ release from isolated cardiac sarcoplasmic reticulum (SR) vesicles, with 25 displaying enhanced Ca2+ release. Competition studies with the parent peptides indicated that the synthetic compounds act at a competing site. The activity of the most effective of the compounds, BIT 180, was further explored using Ca2+ release from skeletal SR vesicles and contraction in intact skeletal muscle fibers. The compounds did not alter tension in intact fibers, indicating that (as expected) they are not membrane permeable, but importantly, that they are not toxic to the intact cells. Proof in principal that the compounds would be effective in intact muscle fibers if rendered membrane permeable was obtained with a structurally related membrane‐permeable scorpion toxin (imperatoxin A), which was found to enhance contraction.  相似文献   

4.
The aim of the study was to investigate the mechanisms of Ca2+ oscillation generation upon activation of connexin-43 and regulation of the lipolysis/lipogenesis balance in white adipocytes through vesicular ATP release. With fluorescence microscopy it was revealed that a decrease in the concentration of extracellular calcium ([Ca2+]ex) results in two types of Ca2+ responses in white adipocytes: Ca2+ oscillations and transient Ca2+ signals. It was found that activation of the connexin half-channels is involved in the generation of Ca2+ oscillations, since the blockers of the connexin hemichannels—carbenoxolone, octanol, proadifen and Gap26—as well as Cx43 gene knockdown led to complete suppression of these signals. The activation of Cx43 in response to the reduction of [Ca2+]ex was confirmed by TIRF microscopy. It was shown that in response to the activation of Cx43, ATP-containing vesicles were released from the adipocytes. This process was suppressed by knockdown of the Cx43 gene and by bafilomycin A1, an inhibitor of vacuolar ATPase. At the level of intracellular signaling, the generation of Ca2+ oscillations in white adipocytes in response to a decrease in [Ca2+]ex occurred due to the mobilization of the Ca2+ ions from the thapsigargin-sensitive Ca2+ pool of IP3R as a result of activation of the purinergic P2Y1 receptors and phosphoinositide signaling pathway. After activation of Cx43 and generation of the Ca2+ oscillations, changes in the expression levels of key genes and their encoding proteins involved in the regulation of lipolysis were observed in white adipocytes. This effect was accompanied by a decrease in the number of adipocytes containing lipid droplets, while inhibition or knockdown of Cx43 led to inhibition of lipolysis and accumulation of lipid droplets. In this study, we investigated the mechanism of Ca2+ oscillation generation in white adipocytes in response to a decrease in the concentration of Ca2+ ions in the external environment and established an interplay between periodic Ca2+ modes and the regulation of the lipolysis/lipogenesis balance.  相似文献   

5.
The mitochondrial Na+-Ca2+ exchanger, NCLX, was reported to supply Ca2+ to sarcoplasmic reticulum (SR)/endoplasmic reticulum, thereby modulating various cellular functions such as the rhythmicity of cardiomyocytes, and cellular Ca2+ signaling upon antigen receptor stimulation and chemotaxis in B lymphocytes; however, there is little information on the spatial relationships of NCLX with SR Ca2+ handling proteins, and their physiological impact. Here we examined the issue, focusing on the interaction of NCLX with an SR Ca2+ pump SERCA in cardiomyocytes. A bimolecular fluorescence complementation assay using HEK293 cells revealed that the exogenously expressed NCLX was localized in close proximity to four exogenously expressed SERCA isoforms. Immunofluorescence analyses of isolated ventricular myocytes showed that the NCLX was localized to the edges of the mitochondria, forming a striped pattern. The co-localization coefficients in the super-resolution images were higher for NCLX–SERCA2, than for NCLX–ryanodine receptor and NCLX–Na+/K+ ATPase α-1 subunit, confirming the close localization of endogenous NCLX and SERCA2 in cardiomyocytes. The mathematical model implemented with the spatial and functional coupling of NCLX and SERCA well reproduced the NCLX inhibition-mediated modulations of SR Ca2+ reuptake in HL-1 cardiomyocytes. Taken together, these results indicated that NCLX and SERCA are spatially and functionally coupled in cardiomyocytes.  相似文献   

6.
It is well established that microgravity exposure causes significant muscle weakness and atrophy via muscle unloading. On Earth, muscle unloading leads to a disproportionate loss in muscle force and size with the loss in muscle force occurring at a faster rate. Although the exact mechanisms are unknown, a role for Ca2+ dysregulation has been suggested. The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump actively brings cytosolic Ca2+ into the SR, eliciting muscle relaxation and maintaining low intracellular Ca2+ ([Ca2+]i). SERCA dysfunction contributes to elevations in [Ca2+]i, leading to cellular damage, and may contribute to the muscle weakness and atrophy observed with spaceflight. Here, we investigated SERCA function, SERCA regulatory protein content, and reactive oxygen/nitrogen species (RONS) protein adduction in murine skeletal muscle after 35–37 days of spaceflight. In male and female soleus muscles, spaceflight led to drastic impairments in Ca2+ uptake despite significant increases in SERCA1a protein content. We attribute this impairment to an increase in RONS production and elevated total protein tyrosine (T) nitration and cysteine (S) nitrosylation. Contrarily, in the tibialis anterior (TA), we observed an enhancement in Ca2+ uptake, which we attribute to a shift towards a faster muscle fiber type (i.e., increased myosin heavy chain IIb and SERCA1a) without elevated total protein T-nitration and S-nitrosylation. Thus, spaceflight affects SERCA function differently between the soleus and TA.  相似文献   

7.
Mag-Fluo-4 has revealed differences in the kinetics of the Ca2+ transients of mammalian fiber types (I, IIA, IIX, and IIB). We simulated the changes in [Ca2+] through the sarcomere of these four fiber types, considering classical (troponin –Tn–, parvalbumin –Pv–, adenosine triphosphate –ATP–, sarcoplasmic reticulum Ca2+ pump –SERCA–, and dye) and new (mitochondria –MITO–, Na+/Ca2+ exchanger –NCX–, and store-operated calcium entry –SOCE–) Ca2+ binding sites, during single and tetanic stimulation. We found that during a single twitch, the sarcoplasmic peak [Ca2+] for fibers type IIB and IIX was around 16 µM, and for fibers type I and IIA reached 10–13 µM. The release rate in fibers type I, IIA, IIX, and IIB was 64.8, 153.6, 238.8, and 244.5 µM ms−1, respectively. Both the pattern of change and the peak concentrations of the Ca2+-bound species in the sarcoplasm (Tn, PV, ATP, and dye), the sarcolemma (NCX, SOCE), and the SR (SERCA) showed the order IIB ≥ IIX > IIA > I. The capacity of the NCX was 2.5, 1.3, 0.9, and 0.8% of the capacity of SERCA, for fibers type I, IIA, IIX, and IIB, respectively. MITO peak [Ca2+] ranged from 0.93 to 0.23 µM, in fibers type I and IIB, respectively, while intermediate values were obtained in fibers IIA and IIX. The latter numbers doubled during tetanic stimulation. In conclusion, we presented a comprehensive mathematical model of the excitation–contraction coupling that integrated most classical and novel Ca2+ handling mechanisms, overcoming the limitations of the fast- vs. slow-fibers dichotomy and the use of slow dyes.  相似文献   

8.
Sarco‐endoplasmic reticulum Ca2+‐ATPase (SERCA), a P‐type ATPase that sustains Ca2+ transport and plays a major role in intracellular Ca2+ homeostasis, represents a therapeutic target for cancer therapy. Here, we investigated whether ruthenium‐based anticancer drugs, namely KP1019 (indazolium [trans‐tetrachlorobis(1H‐indazole)ruthenate(III)]), NAMI‐A (imidazolium [trans‐tetrachloro(1H‐imidazole)(S‐dimethylsulfoxide)ruthenate(III)]) and RAPTA‐C ([Ru(η6p‐cymene)dichloro(1,3,5‐triaza‐7‐phosphaadamantane)]), and cisplatin (cis‐diammineplatinum(II) dichloride) might act as inhibitors of SERCA. Charge displacement by SERCA adsorbed on a solid‐supported membrane was measured after ATP or Ca2+ concentration jumps. Our results show that KP1019, in contrast to the other metal compounds, is able to interfere with ATP‐dependent translocation of Ca2+ ions. An IC50 value of 1 μM was determined for inhibition of calcium translocation by KP1019. Conversely, it appears that KP1019 does not significantly affect Ca2+ binding to the ATPase from the cytoplasmic side. Inhibition of SERCA at pharmacologically relevant concentrations may represent a crucial aspect in the overall pharmacological and toxicological profile of KP1019.  相似文献   

9.
Point mutations in the genes encoding the skeletal muscle isoforms of tropomyosin can cause a range of muscle diseases. The amino acid substitution of Arg for Pro residue in the 90th position (R90P) in γ-tropomyosin (Tpm3.12) is associated with congenital fiber type disproportion and muscle weakness. The molecular mechanisms underlying muscle dysfunction in this disease remain unclear. Here, we observed that this mutation causes an abnormally high Ca2+-sensitivity of myofilaments in vitro and in muscle fibers. To determine the critical conformational changes that myosin, actin, and tropomyosin undergo during the ATPase cycle and the alterations in these changes caused by R90P replacement in Tpm3.12, we used polarized fluorimetry. It was shown that the R90P mutation inhibits the ability of tropomyosin to shift towards the outer domains of actin, which is accompanied by the almost complete depression of troponin’s ability to switch actin monomers off and to reduce the amount of the myosin heads weakly bound to F-actin at a low Ca2+. These changes in the behavior of tropomyosin and the troponin–tropomyosin complex, as well as in the balance of strongly and weakly bound myosin heads in the ATPase cycle may underlie the occurrence of both abnormally high Ca2+-sensitivity and muscle weakness. BDM, an inhibitor of myosin ATPase activity, and W7, a troponin C antagonist, restore the ability of tropomyosin for Ca2+-dependent movement and the ability of the troponin–tropomyosin complex to switch actin monomers off, demonstrating a weakening of the damaging effect of the R90P mutation on muscle contractility.  相似文献   

10.
Pesticides of different chemical classes exert their toxic effects on the nervous system by acting on the different regulatory mechanisms of calcium (Ca2+) homeostasis. Pesticides have been shown to alter Ca2+ homeostasis, mainly by increasing its intracellular concentration above physiological levels. The pesticide-induced Ca2+ overload occurs through two main mechanisms: the entry of Ca2+ from the extracellular medium through the different types of Ca2+ channels present in the plasma membrane or its release into the cytoplasm from intracellular stocks, mainly from the endoplasmic reticulum. It has also been observed that intracellular increases in the Ca2+ concentrations are maintained over time, because pesticides inhibit the enzymes involved in reducing its levels. Thus, the alteration of Ca2+ levels can lead to the activation of various signaling pathways that generate oxidative stress, neuroinflammation and, finally, neuronal death. In this review, we also discuss some proposed strategies to counteract the detrimental effects of pesticides on Ca2+ homeostasis.  相似文献   

11.
Long-acting muscarinic antagonists (LAMAs) and short-acting β2-adrenoceptor agonists (SABAs) play important roles in remedy for COPD. To propel a translational research for development of bronchodilator therapy, synergistic effects between SABAs with LAMAs were examined focused on Ca2+ signaling using simultaneous records of isometric tension and F340/F380 in fura-2-loaded tracheal smooth muscle. Glycopyrronium (3 nM), a LAMA, modestly reduced methacholine (1 μM)-induced contraction. When procaterol, salbutamol and SABAs were applied in the presence of glycopyrronium, relaxant effects of these SABAs are markedly enhanced, and percent inhibition of tension was much greater than the sum of those for each agent and those expected from the BI theory. In contrast, percent inhibition of F340/F380 was not greater than those values. Bisindolylmaleimide, an inhibitor of protein kinase C (PKC), significantly increased the relaxant effect of LAMA without reducing F340/F380. Iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa) channels, significantly suppressed the effects of these combined agents with reducing F340/F380. In conclusion, combination of SABAs with LAMAs synergistically enhances inhibition of muscarinic contraction via decreasing both Ca2+ sensitization mediated by PKC and Ca2+ dynamics mediated by KCa channels. PKC and KCa channels may be molecular targets for cross talk between β2-adrenoceptors and muscarinic receptors.  相似文献   

12.
Clinical and animal studies have demonstrated that chemotherapeutic doxorubicin (DOX) increases arterial stiffness, a predictor of cardiovascular risk. Despite consensus about DOX-impaired endothelium-dependent vasodilation as a contributing mechanism, some studies have reported conflicting results on vascular smooth muscle cell (VSMC) function after DOX treatment. The present study aimed to investigate the effects of DOX on VSMC function. To this end, mice received a single injection of 4 mg DOX/kg, or mouse aortic segments were treated ex vivo with 1 μM DOX, followed by vascular reactivity evaluation 16 h later. Phenylephrine (PE)-induced VSMC contraction was decreased after DOX treatment. DOX did not affect the transient PE contraction dependent on Ca2+ release from the sarcoplasmic reticulum (0 mM Ca2+), but it reduced the subsequent tonic phase characterised by Ca2+ influx. These findings were supported by similar angiotensin II and attenuated endothelin-1 contractions. The involvement of voltage-gated Ca2+ channels in DOX-decreased contraction was excluded by using levcromakalim and diltiazem in PE-induced contraction and corroborated by similar K+ and serotonin contractions. Despite the evaluation of multiple blockers of transient receptor potential channels, the exact mechanism for DOX-decreased VSMC contraction remains elusive. Surprisingly, DOX reduced ex vivo but not in vivo arterial stiffness, highlighting the importance of appropriate timing for evaluating arterial stiffness in DOX-treated patients.  相似文献   

13.
Proximal tubular (PT) acidosis, which alkalinizes the urinary filtrate, together with Ca2+ supersaturation in PT can induce luminal calcium phosphate (CaP) crystal formation. While such CaP crystals are known to act as a nidus for CaP/calcium oxalate (CaOx) mixed stone formation, the regulation of PT luminal Ca2+ concentration ([Ca2+]) under elevated pH and/or high [Ca2+] conditions are unknown. Since we found that transient receptor potential canonical 3 (TRPC3) knockout (KO; -/-) mice could produce mild hypercalciuria with CaP urine crystals, we alkalinized the tubular pH in TRPC3-/- mice by oral acetazolamide (0.08%) to develop mixed urinary crystals akin to clinical signs of calcium nephrolithiasis (CaNL). Our ratiometric (λ340/380) intracellular [Ca2+] measurements reveal that such alkalization not only upsurges Ca2+ influx into PT cells, but the mode of Ca2+ entry switches from receptor-operated to store-operated pathway. Electrophysiological experiments show enhanced bicarbonate related current activity in treated PT cells which may determine the stone-forming phenotypes (CaP or CaP/CaOx). Moreover, such alkalization promotes reactive oxygen species generation, and upregulation of calcification, inflammation, fibrosis, and apoptosis in PT cells, which were exacerbated in absence of TRPC3. Altogether, the pH-induced alteration of the Ca2+ signaling signature in PT cells from TRPC3 ablated mice exacerbated the pathophysiology of mixed urinary stone formation, which may aid in uncovering the downstream mechanism of CaNL.  相似文献   

14.
Already in the early 1960s, researchers noted the potential of mitochondria to take up large amounts of Ca2+. However, the physiological role and the molecular identity of the mitochondrial Ca2+ uptake mechanisms remained elusive for a long time. The identification of the individual components of the mitochondrial calcium uniporter complex (MCUC) in the inner mitochondrial membrane in 2011 started a new era of research on mitochondrial Ca2+ uptake. Today, many studies investigate mitochondrial Ca2+ uptake with a strong focus on function, regulation, and localization of the MCUC. However, on its way into mitochondria Ca2+ has to pass two membranes, and the first barrier before even reaching the MCUC is the outer mitochondrial membrane (OMM). The common opinion is that the OMM is freely permeable to Ca2+. This idea is supported by the presence of a high density of voltage-dependent anion channels (VDACs) in the OMM, forming large Ca2+ permeable pores. However, several reports challenge this idea and describe VDAC as a regulated Ca2+ channel. In line with this idea is the notion that its Ca2+ selectivity depends on the open state of the channel, and its gating behavior can be modified by interaction with partner proteins, metabolites, or small synthetic molecules. Furthermore, mitochondrial Ca2+ uptake is controlled by the localization of VDAC through scaffolding proteins, which anchor VDAC to ER/SR calcium release channels. This review will discuss the possibility that VDAC serves as a physiological regulator of mitochondrial Ca2+ uptake in the OMM.  相似文献   

15.
Because of their low cost and easy production, silica nanoparticles (SiNPs) are widely used in multiple manufacturing applications as anti-caking, densifying and hydrophobic agents. However, this has increased the exposure levels of the general population and has raised concerns about the toxicity of this nanomaterial. SiNPs affect the function of the airway epithelium, but the biochemical pathways targeted by these particles remain largely unknown. Here we investigated the effects of SiNPs on the responses of 16HBE14o- cultured human bronchial epithelial (16HBE) cells to the damage-associated molecular pattern ATP, using fluorometric measurements of intracellular Ca2+ concentration. Upon stimulation with extracellular ATP, these cells displayed a concentration-dependent increase in intracellular Ca2+, which was mediated by release from intracellular stores. SiNPs inhibited the Ca2+ responses to ATP within minutes of application and at low micromolar concentrations, which are significantly faster and more potent than those previously reported for the induction of cellular toxicity and pro-inflammatory responses. SiNPs-induced inhibition is independent from the increase in intracellular Ca2+ they produce, is largely irreversible and occurs via a non-competitive mechanism. These findings suggest that SiNPs reduce the ability of airway epithelial cells to mount ATP-dependent protective responses.  相似文献   

16.
E. J. Masoro  Byung Pal Yu 《Lipids》1971,6(6):357-368
In the intact muscle cell, an internal tubular membrane system called the sarcoplasmic reticulum (SR) plays an important role in the contraction-relaxation cycle by controlling the Ca++ of the myoplasm; release of Ca++ from the SR to myoplasm initiates contractile activity and sequestring Ca++ in the SR by means of a transport system causes muscle to relax. Fragments of the SR with a vesicular structure can be isolated from muscle homogenate and these vesicles are able to vigorously transport Ca++ from incubation media into the intravesicular space thus enabling study of Ca++ transport under precisely defined in vitro conditions. A highly purified fraction of SR vesicles called SF1 were prepared from rat muscle by means of density gradient centrifugation procedures. The role of SR lipid in Ca++ transport was studied. SF1 was treated in vitro with either phospholipase A or C or D or polyene antibiotics. The effect of essential fatty acid deficiency, induced in vivo, was also investigated. It was concluded that the only structural feature of SF1-lipid involved in Ca++ transport and the associated adenosine triphosphatase is the phosphoryl moiety of the phospholipids. Evidence was obtained which inplicated histidine residues of the SF1 protein in this transport function. To study the role of SF1 protein in this process in depth, the membranes were solubilized by a sodium dodecylsulfate system and made free of their lipid components. More than 95% of this protein is soluble in dilute salt solution; of this, more than 90% is composed of a protein fraction which can be isolated by gel filtration (called protein fraction-2). Protein fraction-2 contains large molecular aggregates of small polypeptide subunits of identical or nearly identical molecular weight. They contain solely N-terminal glycine and probably only C-terminal alanine. The significance of such a high percentage of similar polypeptide subunits in SR is discussed. One of five papers to be published from the Symposium “Lipid Transport” presented at the AOCS Meeting, New Orleans, April 1970.  相似文献   

17.
18.
Ageing is associated with an increase in the incidence of heart failure, even if the existence of a real age-related cardiomyopathy remains controversial. Effective contraction and relaxation of cardiomyocytes depend on efficient production of ATP (handled by mitochondria) and on proper Ca2+ supply to myofibrils during excitation–contraction (EC) coupling (handled by Ca2+ release units, CRUs). Here, we analyzed mitochondria and CRUs in hearts of adult (4 months old) and aged (≥24 months old) mice. Analysis by confocal and electron microscopy (CM and EM, respectively) revealed an age-related loss of proper organization and disposition of both mitochondria and EC coupling units: (a) mitochondria are improperly disposed and often damaged (percentage of severely damaged mitochondria: adults 3.5 ± 1.1%; aged 16.5 ± 3.5%); (b) CRUs that are often misoriented (longitudinal) and/or misplaced from the correct position at the Z line. Immunolabeling with antibodies that mark either the SR or T-tubules indicates that in aged cardiomyocytes the sarcotubular system displays an extensive disarray. This disarray could be in part caused by the decreased expression of Cav-3 and JP-2 detected by western blot (WB), two proteins involved in formation of T-tubules and in docking SR to T-tubules in dyads. By WB analysis, we also detected increased levels of 3-NT in whole hearts homogenates of aged mice, a product of nitration of protein tyrosine residues, recognized as marker of oxidative stress. Finally, a detailed EM analysis of CRUs (formed by association of SR with T-tubules) points to ultrastructural modifications, i.e., a decrease in their frequency (adult: 5.1 ± 0.5; aged: 3.9 ± 0.4 n./50 μm2) and size (adult: 362 ± 40 nm; aged: 254 ± 60 nm). The changes in morphology and disposition of mitochondria and CRUs highlighted by our results may underlie an inefficient supply of Ca2+ ions and ATP to the contractile elements, and possibly contribute to cardiac dysfunction in ageing.  相似文献   

19.
During in vitro fertilization of wheat (Triticum aestivum, L.) in egg cells isolated at various developmental stages, changes in cytosolic free calcium ([Ca2+]cyt) were observed. The dynamics of [Ca2+]cyt elevation varied, reflecting the difference in the developmental stage of the eggs used. [Ca2+]cyt oscillation was exclusively observed in fertile, mature egg cells fused with the sperm cell. To determine how [Ca2+]cyt oscillation in mature egg cells is generated, egg cells were incubated in thapsigargin, which proved to be a specific inhibitor of the endoplasmic reticulum (ER) Ca2+-ATPase in wheat egg cells. In unfertilized egg cells, the addition of thapsigargin caused an abrupt transient increase in [Ca2+]cyt in the absence of extracellular Ca2+, suggesting that an influx pathway for Ca2+ is activated by thapsigargin. The [Ca2+]cyt oscillation seemed to require the filling of an intracellular calcium store for the onset of which, calcium influx through the plasma membrane appeared essential. This was demonstrated by omitting extracellular calcium from (or adding GdCl3 to) the fusion medium, which prevented [Ca2+]cyt oscillation in mature egg cells fused with the sperm. Combined, these data permit the hypothesis that the first sperm-induced transient increase in [Ca2+]cyt depletes an intracellular Ca2+ store, triggering an increase in plasma membrane Ca2+ permeability, and this enhanced Ca2+ influx results in [Ca2+]cyt oscillation.  相似文献   

20.
Spreading depolarization (SD) is a wave of mass depolarization that causes profound perfusion changes in acute cerebrovascular diseases. Although the astrocyte response is secondary to the neuronal depolarization with SD, it remains to be explored how glial activity is altered after the passage of SD. Here, we describe post-SD high frequency astrocyte Ca2+ oscillations in the mouse somatosensory cortex. The intracellular Ca2+ changes of SR101 labeled astrocytes and the SD-related arteriole diameter variations were simultaneously visualized by multiphoton microscopy in anesthetized mice. Post-SD astrocyte Ca2+ oscillations were identified as Ca2+ events non-synchronized among astrocytes in the field of view. Ca2+ oscillations occurred minutes after the Ca2+ wave of SD. Furthermore, fewer astrocytes were involved in Ca2+ oscillations at a given time, compared to Ca2+ waves, engaging all astrocytes in the field of view simultaneously. Finally, our data confirm that astrocyte Ca2+ waves coincide with arteriolar constriction, while post-SD Ca2+ oscillations occur with the peak of the SD-related vasodilation. This is the first in vivo study to present the post-SD astrocyte Ca2+ oscillations. Our results provide novel insight into the spatio-temporal correlation between glial reactivity and cerebral arteriole diameter changes behind the SD wavefront.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号