首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Immunotherapy, such as immune checkpoint inhibitors (ICIs), is a validated strategy for treating lung adenocarcinoma (LUAD) patients. One of the main challenges in ICIs treatment is the lack of efficient biomarkers for predicting response or resistance. Metabolic reprogramming has been proven to remodel the tumor microenvironment, altering the response to ICIs. We constructed a prognostic model as metabolism-related gene (MRG) of four genes by using weighted gene co-expression network analysis (WGCNA), the nonnegative matrix factorization (NMF), and Cox regression analysis of a LUAD dataset (n = 500) from The Cancer Genome Atlas (TCGA), which was validated with three Gene Expression Omnibus (GEO) datasets (n = 442, n = 226 and n = 127). The MRG was constructed based on BIRC5, PLK1, CDKN3, and CYP4B1 genes. MRG-high patients had a worse survival probability than MRG-low patients. Furthermore, the MRG-high subgroup was more associated with cell cycle-related pathways; high infiltration of activated memory CD4+T cells, M0 macrophages, and neutrophils; and showed better response to ICIs. Contrarily, the MRG-low subgroup was associated with fatty acid metabolism, high infiltration of dendric cells, and resting mast cells, and showed poor response to ICIs. MRG is a promising prognostic index for predicting survival and response to ICIs and other therapeutic agents in LUAD, which might provide insights on strategies with ICIs alone or combined with other agents.  相似文献   

3.
Despite the recent successes and durable responses with immune checkpoint inhibitors (ICI), many cancer patients, including those with melanoma, do not derive long-term benefits from ICI therapies. The lack of predictive biomarkers to stratify patients to targeted treatments has been the driver of primary treatment failure and represents an unmet medical need in melanoma and other cancers. Understanding genomic correlations with response and resistance to ICI will enhance cancer patients’ benefits. Building on insights into interplay with the complex tumor microenvironment (TME), the ultimate goal should be assessing how the tumor ’instructs’ the local immune system to create its privileged niche with a focus on genomic reprogramming within the TME. It is hypothesized that this genomic reprogramming determines the response to ICI. Furthermore, emerging genomic signatures of ICI response, including those related to neoantigens, antigen presentation, DNA repair, and oncogenic pathways, are gaining momentum. In addition, emerging data suggest a role for checkpoint regulators, T cell functionality, chromatin modifiers, and copy-number alterations in mediating the selective response to ICI. As such, efforts to contextualize genomic correlations with response into a more insightful understanding of tumor immune biology will help the development of novel biomarkers and therapeutic strategies to overcome ICI resistance.  相似文献   

4.
5.
5-Lipoxygenase converts arachidonic acid into leukotrienes, which are involved in inflammation and angiogenesis. The introduction of carboranes can improve the pharmacokinetic behavior of metabolically less stable pharmaceutics. Herein we report the syntheses of several carborane-based inhibitors of the 5-lipoxygenase pathway. The isosteric replacement of phenyl rings by carboranes leads to improved cytotoxicity toward several melanoma and colon cancer cell lines. For the colon cancer cell line HCT116, the co-inhibition of heat shock protein 90 was observed.  相似文献   

6.
Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) mediate anti-viral response through mitochondria. In addition, RLR activation induces anti-tumor effects on various cancers. We previously reported that the RLR agonist Poly(I:C)-HMW/LyoVec™ (Poly(I:C)) enhanced radiosensitivity and that cotreatment with Poly(I:C) and ionizing radiation (IR) more than additively increased cell death in lung adenocarcinoma cells, indicating that Poly(I:C) modulates the cellular radiation response. However, it remains unclear how mitochondria are involved in the modulation of this response. Here, we investigated the involvement of mitochondrial dynamics and mitochondrial ribosome protein death-associated protein 3 (DAP3) in the modulation of cellular radiation response by Poly(I:C) in A549 and H1299 human lung adenocarcinoma cell lines. Western blotting revealed that Poly(I:C) decreased the expression of mitochondrial dynamics-related proteins and DAP3. In addition, siRNA experiments showed that DAP3, and not mitochondrial dynamics, is involved in the resistance of lung adenocarcinoma cells to IR-induced cell death. Finally, we revealed that a more-than-additive effect of cotreatment with Poly(I:C) and IR on increasing cell death was diluted by DAP3-knockdown because of an increase in cell death induced by IR alone. Together, our findings suggest that RLR agonist Poly(I:C) modulates the cellular radiation response of lung adenocarcinoma cells by downregulating DAP3 expression.  相似文献   

7.
Lung cancer causes many deaths globally. Mutations in regulatory genes, irregularities in specific signal transduction events, or alterations of signalling pathways are observed in cases of non-small cell lung cancer (NSCLC). Over the past two decades, a few kinases have been identified, validated, and studied as biomarkers for NSCLC. Among them, EGFR, ALK, ROS1, MET, RET, NTRK, and BRAF are regarded as targetable biomarkers to cure and/or control the disease. In recent years, the US Food and Drug Administration (FDA) approved more than 15 kinase inhibitors targeting these NSCLC biomarkers. The kinase inhibitors significantly improved the progression-free survival (PFS) of NSCLC patients. Challenges still remain for metastatic diseases and advanced NSCLC cases. New discoveries of potent kinase inhibitors and rapid development of modern medical technologies will help to control NSCLC cases. This article provides an overview of the discoveries of various types of kinase inhibitors against NSCLC, along with medicinal chemistry aspects and related developments in next-generation kinase inhibitors that have been reported in recent years.  相似文献   

8.
Both in Taiwan and around the world, lung cancer is a primary cause of cancer-related deaths. In Taiwan, the most prevalent form of lung cancer is lung adenocarcinoma, a type of non-small-cell lung carcinoma. Although numerous lung cancer therapies are available, their clinical outcomes are unsatisfactory. Natural products, including fungal metabolites, are excellent sources of pharmaceutical compounds used in cancer treatment. We employed in vitro cell invasion, cell proliferation, cell migration, cell viability, and colony formation assays with the aim of evaluating the effects of coriloxin, isolated from fermented broths of Nectria balsamea YMJ94052402, on human lung adenocarcinoma CL1-5 and/or A549 cells. The potential targets regulated by coriloxin were examined through Western blot analysis. The cytotoxic effect of coriloxin was more efficiently exerted on lung adenocarcinoma cells than on bronchial epithelial cells. Moreover, low-concentration coriloxin significantly suppressed adenocarcinoma cells’ proliferative, migratory, and clonogenic abilities. These inhibitory effects were achieved through ERK/AKT inactivation, epithelial–mesenchymal transition regulation, and HLJ1 expression. Our findings suggest that coriloxin can be used as a multitarget anticancer agent. Further investigations of the application of coriloxin as an adjuvant therapy in lung cancer treatment are warranted.  相似文献   

9.
A semi-exhaustive approach and a heuristic search algorithm use a fragment-based drug design (FBDD) strategy for designing new inhibitors in an in silico process. A deconstruction reconstruction process uses a set of known Hsp90 ligands for generating new ones. The deconstruction process consists of cutting off a known ligand in fragments. The reconstruction process consists of coupling fragments to develop a new set of ligands. For evaluating the approaches, we compare the binding energy of the new ligands with the known ligands.  相似文献   

10.
Background: Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Chemotherapy, the treatment of choice in non-operable cases, achieves a dismal success rate, raising the need for new therapeutic options. In about 25% of NSCLC, the activating mutations of the KRAS oncogene define a subclass that cannot benefit from tyrosine kinase inhibitors (TKIs). The tumor suppressor miR-16 is downregulated in many human cancers, including NSCLC. The main objectives of this study were to evaluate miR-16 treatment to restore the TKI sensitivity and compare its efficacy to MEK inhibitors in KRAS-mutated NSCLC. Methods: We performed in vitro and in vivo studies to investigate whether miR-16 could be exploited to overcome TKI resistance in KRAS-mutated NSCLC. We had three goals: first, to identify the KRAS downstream effectors targeted by mir-16, second, to study the effects of miR-16 restoration on TKI resistance in KRAS-mutated NSCLC both in vitro and in vivo, and finally, to compare miR-16 and the MEK inhibitor selumetinib in reducing KRAS-mutated NSCLC growth in vitro and in vivo. Results: We demonstrated that miR-16 directly targets the three KRAS downstream effectors MAPK3, MAP2K1, and CRAF in NSCLC, restoring the sensitivity to erlotinib in KRAS-mutated NSCLC both in vitro and in vivo. We also provided evidence that the miR-16–erlotinib regimen is more effective than the selumetinib–erlotinib combination in KRAS-mutated NSCLC. Conclusions: Our findings support the biological preclinical rationale for using miR-16 in combination with erlotinib in the treatment of NSCLC with KRAS-activating mutations.  相似文献   

11.
The alarmin interleukin-33 (IL-33) is released upon cell stress and damage in peripheral tissues. The receptor for IL-33 is the Toll/Interleukin-1 receptor (TIR)-family member T1/ST2 (the IL-33R), which is highly and constitutively expressed on MCs. The sensing of IL-33 by MCs induces the MyD88−TAK1−IKK2-dependent activation of p65/RelA and MAP-kinases, which mediate the production of pro-inflammatory cytokines and amplify FcεRI-mediated MC-effector functions and the resulting allergic reactions. Therefore, the investigation of IL-33-induced signaling is of interest for developing therapeutic interventions effective against allergic reactions. Importantly, beside the release of IL-33, heat shock proteins (HSPs) are upregulated during allergic reactions. This maintains the biological functions of signaling molecules and/or cytokines but unfortunately also strengthens the severity of inflammatory reactions. Here, we demonstrate that HSP90 does not support the IL-33-induced and MyD88−TAK1−IKK2-dependent activation of p65/RelA and of mitogen-activated protein (MAP)-kinases. We found that HSP90 acts downstream of these signaling pathways, mediates the stability of produced cytokine mRNAs, and therefore facilitates the resulting cytokine production. These data show that IL-33 enables MCs to perform an effective cytokine production by the upregulation of HSP90. Consequently, HSP90 might be an attractive therapeutic target for blocking IL-33-mediated inflammatory reactions.  相似文献   

12.
Microgravity is a novel strategy that may serve as a complementary tool to develop future cancer therapies. In lung cancer, the influence of microgravity on cellular processes and the migratory capacity of cells is well addressed. However, its effect on the mechanisms that drive lung cancer progression remains in their infancy. In this study, 13 differentially expressed genes were shown to be associated with the prognosis of lung cancer under simulated microgravity (SMG). Using gene set enrichment analysis, these genes are enriched in humoral immunity pathways. In lieu, alveolar basal-epithelial (A549) cells were exposed to SMG via a 2D clinostat system in vitro. In addition to morphology change and decrease in proliferation rate, SMG reverted the epithelial-to-mesenchymal transition (EMT) phenotype of A549, a key mechanism in cancer progression. This was evidenced by increased epithelial E-cadherin expression and decreased mesenchymal N-cadherin expression, hence exhibiting a less metastatic state. Interestingly, we observed increased expression of FCGBP, BPIFB, F5, CST1, and CFB and their correlation to EMT under SMG, rendering them potential tumor suppressor biomarkers. Together, these findings reveal new opportunities to establish novel therapeutic strategies for lung cancer treatment.  相似文献   

13.
Microbial dysbiosis has emerged as a modulator of oncogenesis and response to therapy, particularly in lung cancer. Here, we investigate the evolution of the gut and lung microbiomes following exposure to a tobacco carcinogen. We performed 16S rRNA-Seq of fecal and lung samples collected prior to and at several timepoints following (nicotine-specific nitrosamine ketone/NNK) exposure in Gprc5a−/− mice that were previously shown to exhibit accelerated lung adenocarcinoma (LUAD) development following NNK exposure. We found significant progressive changes in human-relevant gut and lung microbiome members (e.g., Odoribacter, Alistipes, Akkermansia, and Ruminococus) that are closely associated with the phenotypic development of LUAD and immunotherapeutic response in human lung cancer patients. These changes were associated with decreased short-chain fatty acids (propionic acid and butyric acid) following exposure to NNK. We next sought to study the impact of Lcn2 expression, a bacterial growth inhibitor, given our previous findings on its protective role in LUAD development. Indeed, we found that the loss of Lcn2 was associated with widespread gut and lung microbiome changes at all timepoints, distinct from those observed in our Gprc5a−/− mouse model, including a decrease in abundance and diversity. Our overall findings apprise novel cues implicating microbial phenotypes in the development of tobacco-associated LUAD.  相似文献   

14.
Accumulating evidence indicates that the reliable gene signature may serve as an independent prognosis factor for lung adenocarcinoma (LUAD) diagnosis. Here, we sought to identify a risk score signature for survival prediction of LUAD patients. In the Gene Expression Omnibus (GEO) database, GSE18842, GSE75037, GSE101929, and GSE19188 mRNA expression profiles were downloaded to screen differentially expressed genes (DEGs), which were used to establish a protein-protein interaction network and perform clustering module analysis. Univariate and multivariate proportional hazards regression analyses were applied to develop and validate the gene signature based on the TCGA dataset. The signature genes were then verified on GEPIA, Oncomine, and HPA platforms. Expression levels of corresponding genes were also measured by qRT-PCR and Western blotting in HBE, A549, and PC-9 cell lines. The prognostic signature based on eight genes (TTK, HMMR, ASPM, CDCA8, KIF2C, CCNA2, CCNB2, and MKI67) was established, which was independent of other clinical factors. The risk model offered better discrimination between risk groups, and patients with high-risk scores tended to have poor survival rate at 1-, 3- and 5-year follow-up. The model also presented better survival prediction in cancer-specific cohorts of age, gender, clinical stage III/IV, primary tumor 1/2, and lymph node metastasis 1/2. The signature genes, moreover, were highly expressed in A549 and PC-9 cells. In conclusion, the risk score signature could be used for prognostic estimation and as an independent risk factor for survival prediction in patients with LUAD.  相似文献   

15.
16.
Inflammatory bowel disease (IBD) is a chronic immune-mediated inflammation of the gastrointestinal tract with a highly heterogeneous presentation. It has a relapsing and remitting clinical course that necessitates lifelong monitoring and treatment. Although the availability of a variety of effective therapeutic options including immunomodulators and biologics (such as TNF, CAM inhibitors) has led to a paradigm shift in the treatment outcomes and clinical management of IBD patients, some patients still either fail to respond or lose their responsiveness to therapy over time. Therefore, according to the recent Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE-II) recommendations, continuous disease monitoring from symptomatic relief to endoscopic healing along with short- and long-term therapeutic responses are critical for providing IBD patients with a tailored therapy algorithm. Moreover, considering the high unmet need for novel therapeutic approaches for IBD patients, various new modulators of cytokine signaling events (for example, JAK/TYK inhibitors), inhibitors of cytokines (for example IL-12/IL-23, IL-22, IL-36, and IL-6 inhibitors), anti-adhesion and migration strategies (for example, β7 integrin, sphingosine 1-phosphate receptors, and stem cells), as well as microbial-based therapeutics to decolonize the bed buds (for example, fecal microbiota transplantation and bacterial inhibitors) are currently being evaluated in different phases of controlled clinical trials. This review aims to offer a comprehensive overview of available treatment options and emerging therapeutic approaches for IBD patients. Furthermore, predictive biomarkers for monitoring the therapeutic response to different IBD therapies are also discussed.  相似文献   

17.
Interstitial lung diseases (ILDs) include a large number of diseases and causes with variable outcomes often associated with progressive fibrosis. Although each of the individual fibrosing ILDs are rare, collectively, they affect a considerable number of patients, representing a significant burden of disease. Idiopathic pulmonary fibrosis (IPF) is the typical chronic fibrosing ILD associated with progressive decline in lung. Other fibrosing ILDs are often associated with connective tissues diseases, including rheumatoid arthritis-ILD (RA-ILD) and systemic sclerosis-associated ILD (SSc-ILD), or environmental/drug exposure. Given the vast number of progressive fibrosing ILDs and the disparities in clinical patterns and disease features, the course of these diseases is heterogeneous and cannot accurately be predicted for an individual patient. As a consequence, the discovery of novel biomarkers for these types of diseases is a major clinical challenge. Heat shock proteins (HSPs) are molecular chaperons that have been extensively described to be involved in fibrogenesis. Their extracellular forms (eHSPs) have been recently and successfully used as therapeutic targets or circulating biomarkers in cancer. The current review will describe the role of eHSPs in fibrosing ILDs, highlighting the importance of these particular stress proteins to develop new therapeutic strategies and discover potential biomarkers in these diseases.  相似文献   

18.
Accumulating evidence shows that activity of the pyruvate kinase M2 (PKM2) isoform is closely related to tumorigenesis. In this study, we investigated the relationship betweenPKM2 expression, tumor invasion, and the prognosis of patients with lung adenocarcinoma. We retrospectively analyzed 65 cases of patients with lung adenocarcinoma who were divided into low and a high expression groups based on PKM2immunohistochemical staining. High PKM2 expression was significantly associated with reduced patient survival. We used small interfering RNA (siRNA) technology to investigate the effect of targeted PKM2-knockout on tumor growth at the cellular level. In vitro, siRNA-mediated PKM2-knockdown significantly inhibited the proliferation, glucose uptake (25%), ATP generation (20%) and fatty acid synthesis of A549 cells, while the mitochondrial respiratory capacity of the cells increased (13%).Western blotting analysis showed that PKM2-knockout significantly inhibited the expression of the glucose transporter GLUT1 and ATP citrate lyase, which is critical for fatty acid synthesis. Further Western blotting analysis showed that PKM2-knockdown inhibited the expression of matrix metalloproteinase 2 (MMP-2) and vascular endothelial growth factor (VEGF), which are important in degradation of the extracellular matrix and angiogenesis, respectively. These observations show that PKM2 activates both glycolysis and lipid synthesis, thereby regulating cell proliferation and invasion. This information is important in elucidating the mechanisms by which PKM2 influences the growth and metastasis of lung adenocarcinoma at the cellular and molecular level, thereby providing the basic data required for the development of PKM2-targeted gene therapy.  相似文献   

19.
Eosinophils are rare, multifunctional granulocytes. Their growth, survival, and tissue migration mainly depend on interleukin (IL)-5 in physiological conditions and on IL-5 and IL-33 in inflammatory conditions. Preclinical evidence supports an immunological role for eosinophils as innate immune cells and as agents of the adaptive immune response. In addition to these data, several reports show a link between the outcomes of patients treated with immune checkpoint inhibitors (ICI) for advanced cancers and blood eosinophilia. In this review, we present, in the context of non-small cell lung cancer (NSCLC), the biological properties of eosinophils and their roles in homeostatic and pathological conditions, with a focus on their pro- and anti-tumorigenic effects. We examine the possible explanations for blood eosinophilia during NSCLC treatment with ICI. In particular, we discuss the value of eosinophils as a potential prognostic and predictive biomarker, highlighting the need for stronger clinical data. Finally, we conclude with perspectives on clinical and translational research topics on this subject.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号