首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
短程硝化-反硝化生物脱氮技术研究   总被引:10,自引:0,他引:10  
对传统生物脱氮工艺原理和短程硝化—反硝化工艺原理进行了比较 ,分析了短程硝化 -反硝化技术的实用价值 ,提出了实现短程反硝化的控制条件。  相似文献   

2.
短程硝化反硝化理论及工艺研究进展   总被引:1,自引:0,他引:1  
朱洪山  吕斌 《山西建筑》2010,36(11):180-181
介绍了SCND理论研究进展,对影响亚硝酸积累的温度、pH、分子态游离氨、DO、泥龄等因素进行了分析,阐述了近年来国内外主要的SCND理论研究成果,并得出了相关结论,以期促进短程硝化反硝化理论研究。  相似文献   

3.
短程硝化-反硝化生物脱氮   总被引:152,自引:16,他引:152  
短程硝化-反硝化生物脱氮法是将硝化控制在形成亚硝酸阶段,阻止亚硝酸的进一步硝化,然后直接进行反硝化。这一方法可以克服传统生物脱氮法存在的问题,其关键是在硝化阶段维持HNO2长久稳定地积累。本文结合国内外研究,对形成HNO2积累的条件和影响因素进行了分析,探讨了实现短程硝化的途径。  相似文献   

4.
厌氧氨氧化技术利用NO2--N氧化NH4+-N,实现污水中氮素的高效去除,其中NO2--N的产生是实现厌氧氨氧化应用的难点。短程硝化是获取NO2--N的重要途径之一,但目前在实际工程中通过短程硝化难以实现长期稳定的亚硝酸盐积累。短程反硝化工艺将反硝化过程控制在硝酸盐还原的第一步来积累NO2--N,可实现从反硝化途径获得NO2--N为厌氧氨氧化反应提供底物,去除污水中的氮素污染物。简要介绍了短程反硝化工艺的发展背景、研究进展、启动及控制策略等,并对短程反硝化过程亚硝酸盐积累机制及其与厌氧氨氧化工艺耦合方式进行了总结,最后对其未来的研究方向进行了展望。  相似文献   

5.
应用实时控制实现和稳定短程硝化反硝化   总被引:13,自引:3,他引:13  
以实际豆制品生产废水为处理对象,采用SBR反应器研究了过度曝气(曝气时间过长)对短程硝化的影响,在此基础上提出了应用实时控制技术在常温、正常溶解氧和中性pH值时实现和稳定短程硝化的新方法。试验结果表明,在反应器温度为(28±0.5)℃、过度曝气12周期后,硝化类型就由亚硝酸盐积累率为96%的短程硝化转变为亚硝酸盐积累率为39%的全程硝化;而应用实时控制策略在反应器温度为(27±0.5)℃和(25±0.5)℃时可较好地维持短程硝化反硝化,且经过两个月的运行硝化类型也没有改变,亚硝酸盐积累率仍然保持在96%以上。因此可以得出,好氧反应时间的控制在亚硝化阶段基本结束时是维持并稳定短程硝化的关键。实际上,即使在能充分实现短程硝化的条件下,过度曝气也能使短程硝化向全程硝化转化。  相似文献   

6.
新型短程硝化反硝化工艺处理高浓度氨氮废水   总被引:1,自引:0,他引:1  
研发了一种新型短程硝化反硝化工艺——ANITATMShunt,它通过特殊的自控系统来控制N2O的释放。采用500 L的SBR中试装置处理消化污泥脱水上清液,经过18个月的稳定运行表明:通过短程硝化反硝化途径可以实现90%的脱氮率,并且释放的N2O不足总脱氮量的0.7%。将通过pH值、温度和在线监测的NO-2-N浓度实时计算的亚硝酸浓度与亚硝酸浓度设定值进行比对,以便对曝气过程进行调控,从而抑制了N2O的释放并实现了对SBR短程硝化反硝化工艺的自动控制。同时证实了在低溶解氧条件下,由氨氧化菌(AOB)在短程硝化反硝化过程中产生的N2O并非与高亚硝酸盐浓度有直接关系,而是与游离亚硝酸浓度有关。  相似文献   

7.
张云  田猛 《山西建筑》2010,36(16):152-153
指出短程硝化反硝化工艺是目前国内外生物脱氮技术研究应用的热点,通过介绍短程硝化反硝化工艺原理,分析了不同工艺稳定亚硝态氮积累实现短程硝化的工艺控制措施,对短程硝化反硝化工艺今后的研究和应用进行了展望。  相似文献   

8.
好氧反硝化在短程硝化反硝化工艺中的作用研究   总被引:1,自引:0,他引:1  
采用SBR反应器处理垃圾渗滤液,研究了短程硝化反硝化过程中好氧反硝化的作用。结果表明,SBR反应器的亚硝化效果良好,氨氮几乎完全被氧化为NO2^- -N;该系统的活性污泥中同时存在能还原NO3^- -N和NO2^- -N的好氧反硝化菌,还原NO3^- -N的好氧反硝化菌和氨氧化菌的数量及其总活性高于NO2^- -N氧化菌,这是SBR反应器能够长期维持亚硝化状态的重要原因;有机物浓度越高则好氧反硝化速率越快,此时氨氮均被氧化为NO2^- -N,当有机物浓度达到某临界值时,好氧反硝化速率几乎保持不变;溶解氧浓度越低则好氧反硝化速率越快,释放出的OH^-会导致pH值升高。好氧反硝化对于维持和促进SBR反应器的短程硝化反硝化具有重要的作用。  相似文献   

9.
曝气生物滤池的短程硝化反硝化机理研究   总被引:16,自引:4,他引:16  
通过小试研究了曝气生物滤池实现短程硝化反硝化的效能和机理。试验结果表明,曝气生物滤池在滤速为1~2m/h、气水比为3∶1、水温为21~26.5℃、进水COD负荷为1.18~5.57kg/(m3·d)、NH3-N负荷为0.26~0.62kg/(m3·d)、TN负荷为0.28~0.63kg/(m3·d)的条件下可以取得良好的去除有机物和脱氮效果。试验中还发现,反应器中出现了明显的NO-2积累现象,并表现出显著的短程硝化反硝化特征,进行机理分析后认为曝气生物滤池的结构特征和运行方式是其能够进行短程硝化反硝化的主要原因。  相似文献   

10.
生物脱氮反应器同步硝化反硝化研究   总被引:2,自引:0,他引:2  
以生活污水为处理对象,对一体式悬浮载体膨胀床(ISCEB)生物脱氮反应器同步硝化反硝化现象进行了研究,并研究了DO、C/N比及进水有机负荷等因素对同步硝化反硝化的影响。  相似文献   

11.
构建以厌氧(An)、好氧(O1和O2)、缺氧(A1和A2)、快速曝气(O3)单元组成的新型短程硝化同步反硝化除磷工艺。在其中厌氧(An)/缺氧(A1)的运行环境,成功驯化出了一种能以硝酸盐和亚硝酸盐为电子受体的反硝化聚磷菌(DPB),其兼具脱氮与除磷双重功能,实现了一碳两用的目的,节约了能耗和曝气量。通过静态试验发现,亚硝酸盐型反硝化除磷速率为4.78 mg/(L·h),硝酸盐型反硝化速率为6.24 mg/(L·h)。反硝化除磷量占到了系统总除磷量的60%以上,其中缺氧1池就占到了50%。  相似文献   

12.
对同时硝化反硝化研究进展的分析   总被引:1,自引:1,他引:1  
通过对比传统生物脱氮理论,提出同时硝化反硝化技术的优点,结合国内外研究现状,主要从微环境理论和生物化学方面进行综述,并指明好氧反硝化今后的研究方向,以达到提高系统处理能力和效率的目的。  相似文献   

13.
试验采用SBR工艺研究了不同盐度下,NH+4N、pH值、温度等因素对含盐废水短程硝化反硝化的影响.结果表明,含盐量增加有助于亚硝酸盐的积累.含盐量在1759~24630mg/L范围内,通过提高进水pH值和进水NH+4N浓度,可以使亚硝化率[NO-2/(NO-2+NO-3)]达到90%以上.实验证明,亚硝酸菌有较高的耐盐性,能在高盐环境中保持良好的活性.  相似文献   

14.
短程硝化反硝化工艺处理焦化高氨废水   总被引:17,自引:0,他引:17  
短程硝化反硝化处理焦化废水的中试结果表明,进水COD、NH4^ -N、TN和酚的浓度分别为1201.6、510.4、540.1和110.4mg/L时,出水COD、NH4^ -N、TN和酚的平均浓度分别为197.1、14.2、181.5和0.4mg/L,相应的去除率分别为83.6%、97.2%、66.4%和99.6%。与常规生物脱氮工艺相比,该工艺氨氮负荷高,在较低的C/N值条件下可使TN去除率提高。  相似文献   

15.
SMSBR处理焦化废水中的短程硝化反硝化   总被引:37,自引:1,他引:37  
采用一体化膜—序批式生物反应器 (SubmergedMembraneSequencingBatchReactor ,简称SMSBR)处理焦化废水的过程中获得了稳定、高效的短程硝化作用 ,平均亚硝化率 (NO2 -N/NOX-N)为 91.1% ,并通过试验证实了这是由于泥龄太长所产生的微生物代谢产物抑制了硝化反应过程中的硝酸盐细菌的结果。在试验运行初期 ,由于泥龄短使微生物代谢产物未得到充分积累 ,硝化过程进行得非常彻底 ;然后在高效短程硝化的基础上进行反硝化 ,当反硝化负荷 <0 .174kgNOX-N/ (kgSS·d)、HRT >8.4 4h时 ,可实现 81.34 %的反硝化率 ,此时外加碳源的COD∶N为 2 .1∶1。  相似文献   

16.
短程与全程硝化反硝化过程中N_2O产量比较   总被引:2,自引:0,他引:2  
采用序批式活性污泥反应器(SBR)对生活污水短程及全程硝化反硝化过程中N2O的产生量进行了考察.结果表明,在进水氨氮浓度相同且不限制DO的条件下,全程硝化反硝化过程中N2O的总产生量为短程硝化反硝化的2倍左右;硝化类型不会影响反硝化过程对溶解性N2O的还原,无论以(NO2-)-N还是以(NO3-)-N为电子受体,反硝化过程均有利于降低N2O的浓度.  相似文献   

17.
结合现有的关于短程反硝化的理论,通过膜法A/O工艺试验,探讨了在附着生长系统中实现短程反硝化的可能性。  相似文献   

18.
城市污水短程硝化的实现途径   总被引:2,自引:0,他引:2  
曾广德 《供水技术》2009,3(1):23-26
探讨了影响废水中亚硝酸盐积累的三大主要因素:溶解氧、温度和pH。针对常温低氨氮城市污水,从理论上分析了以活性污泥法和生物膜法的形式进行亚硝化的启动方法和运行策略,为短程硝化/厌氧氨氧化工艺在城市污水处理中的应用提供了可借鉴的研究基础。  相似文献   

19.
低DO下的短程硝化及同步硝化反硝化   总被引:30,自引:1,他引:30  
研究了低溶解氧下序批式反应器(SBR)的短程硝化特征和控制条件以及碳源浓度、投加方式对同步脱氮效率的影响。试验结果表明,保持高、低溶解氧交替的环境是实现短程硝化的关键;当进水NH4^ -N为300mg/L、COD为400~600mg/L时,采用半连续碳源投加方式可保证总同步脱氮效率达到80%。  相似文献   

20.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号