首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
高颖  梅诗意 《建筑技术》2020,51(3):260-263
我国建筑行业碳排放量化水平是决定我国减排目标能否实现的影响因素之一。为填补我国木结构建筑全生命周期碳排放数据库的研究空白,探析我国木结构建筑全生命周期碳排放数据库的建设,介绍木结构建筑全生命周期碳排放数据库的基本定义和意义,对比其与混凝土结构全生命周期碳排放数据库的异同点,并分析木结构建筑碳排放数据库的局限性。  相似文献   

2.
低碳建筑全生命周期碳排放影响因素分析   总被引:1,自引:0,他引:1  
陈力莅  丁太威  耿化民 《四川建筑》2012,32(5):79-80,82
文章基于全生命周期评价理论,以住宅建筑为例,对低碳建筑概念进行界定,并且在整个建筑的全生命过程中,从建筑项目的决策、规划设计、施工、使用和拆除五个阶段分析低碳建筑各阶段影响碳排放的因素。  相似文献   

3.
从国内外对努力降低二氧化碳排放量的共识出发,简单介绍了轻型木结构房屋应用情况和碳排放计算的国内外研究现状,考虑到木材的负碳效应,将轻型木结构建筑全生命周期划分为木材生长阶段、建筑材料生产阶段、建筑施工阶段、建筑使用阶段、建筑拆除和处理5个阶段,分别给出了各个阶段二氧化碳排放量的计算公式,为轻型木结构房屋二氧化碳排放定量计算提供方法.研究的方法和得到的启示对其他类型的木结构具有广泛的借鉴意义,为今后相关研究的发展指明了方向.  相似文献   

4.
沈丹丹 《建筑施工》2021,43(10):2162-2166
建立建筑全生命周期碳排放量计算模型,定量研究生产、运输、建造、运行、拆除和回收不同阶段的碳排放量,并以上海某公共建筑为案例,进行了建筑全生命周期碳排放量的计算,结果表明,该建筑全生命周期单位面积碳排放量指标为2.72 t/m2,运行期间的建筑碳排放量在建筑全生命周期碳排放量占比最高,其次为建材生产阶段.降低运行阶段的能源需求,选择可再循环和碳排放因子小的建材、减少建筑材料的使用和浪费有助于降低建筑全生命周期碳排放量.该模型的建立,可为建筑全生命周期碳排放计算提供依据,为优化设计方案、建造方案和运行方案提供方法指导.  相似文献   

5.
沈丹丹 《建筑施工》2021,43(10):2162-2166
建立建筑全生命周期碳排放量计算模型,定量研究生产、运输、建造、运行、拆除和回收不同阶段的碳排放量,并以上海某公共建筑为案例,进行了建筑全生命周期碳排放量的计算,结果表明,该建筑全生命周期单位面积碳排放量指标为2.72 t/m2,运行期间的建筑碳排放量在建筑全生命周期碳排放量占比最高,其次为建材生产阶段.降低运行阶段的能源需求,选择可再循环和碳排放因子小的建材、减少建筑材料的使用和浪费有助于降低建筑全生命周期碳排放量.该模型的建立,可为建筑全生命周期碳排放计算提供依据,为优化设计方案、建造方案和运行方案提供方法指导.  相似文献   

6.
沈丹丹 《建筑施工》2021,43(10):2162-2166
建立建筑全生命周期碳排放量计算模型,定量研究生产、运输、建造、运行、拆除和回收不同阶段的碳排放量,并以上海某公共建筑为案例,进行了建筑全生命周期碳排放量的计算,结果表明,该建筑全生命周期单位面积碳排放量指标为2.72 t/m2,运行期间的建筑碳排放量在建筑全生命周期碳排放量占比最高,其次为建材生产阶段.降低运行阶段的能源需求,选择可再循环和碳排放因子小的建材、减少建筑材料的使用和浪费有助于降低建筑全生命周期碳排放量.该模型的建立,可为建筑全生命周期碳排放计算提供依据,为优化设计方案、建造方案和运行方案提供方法指导.  相似文献   

7.
建筑领域碳排放占全社会总能耗的1/3,这仅仅是建筑运行使用过程,若考虑建筑全生命周期,比例将会更高。在现行的绿色建筑评价标准引导下,绿色建筑是否比普通建筑全生命周期更低碳,目前相关研究甚少。本项研究基于LCA理论,在总结前人研究基础上,明确绿色建筑全生命周期碳排放计算方法,并以天津生态城75栋绿色居住建筑为样本,计算并比较了不同星级绿色居住建筑全生命周期碳排放水平。结果表明,单位建筑面积年碳排放量为43-64kg CO2/m2·a,且碳排放水平与绿色建筑星级无明显关系。本项研究为建立天津地区建筑全生命周期碳排放清单数据库和评价体系提供支撑。  相似文献   

8.
进入“十四五”时期,为达成“碳达峰”和“碳中和”的目标,国家和行业对工程建造阶段的碳排放研究提出了更高的要求。本文针对“建造阶段碳排放量对建筑全生命周期碳排放量的影响”这一行业内普遍关注的问题,从四个方面进行了剖析探讨,并针对相关国家规范实施的影响进行了分析。基于探讨和分析的结果,对工程承包企业在工程建造阶段的碳排放研究给出了建议。  相似文献   

9.
太阳能技术的引入在建筑使用阶段达到了低碳减排的目的,然而"低碳"不能依靠末端减排。作为一项系统工程,真正实现低碳建筑要靠系统减排。该文以"零能耗太阳能住宅产品"为例,通过核算建筑全生命周期(主要是建材开采、生产阶段和建筑使用阶段)的碳排放,客观、真实地反映太阳能光伏技术的应用对建筑全生命周期碳排放的影响。结论:由于使用太阳能系统,使用阶段的碳排放量降低了90%,然而太阳能系统在建材生产阶段的碳排放量也是不容忽视的,太阳能光电板生产的碳排放占总建材碳排放量的41%,必须纳入到建筑碳排放的全生命周期中去考虑。  相似文献   

10.
木结构建筑因其综合能耗低、建筑材料环境亲和力强、抗震性能好等突出优点,满足业主对环保和舒适的要求,在我国的建设逐年增多,得到了国家建设部住宅产业发展中心的大力支持和推广.由于轻型木结构具有建设周期短、得房率高、性价比适宜及节能环保等优势,发展潜力很大.主要论述轻型木结构建筑的特点及其在我国未来发展中的应用前景.  相似文献   

11.
针对当今公共建筑耗能与碳排放量大的问题,以传统低碳建筑研究方法为媒介,将建筑全生命周期简化为材料生产阶段,建造施工阶段,运行使用阶段和拆除处理阶段,并配合DeST软件模拟出建筑运行使用阶段的能耗值。通过对大连地区某高层办公楼进行全生命周期内的碳排放计算,归纳全生命周期中办公建筑各阶段的碳排放的特点,为方案设计中碳排放控制提供依据,为低碳建筑设计从方案本身考虑运行使用阶段的减碳提供理论指导。  相似文献   

12.
通过对既有居住建筑超低能耗全生命周期各阶段进行分析,简化各阶段计算公式,结合示范项目测算碳排放量,确定了超低能耗节能改造后既有居住建筑碳排放量可节约57.95%,并显著减少温室气体排放,降低温室效应.  相似文献   

13.
从生命周期角度研究了建筑陶瓷的碳排放情况,具体边界涵盖原材料开采及运输、产品生产三个过程,提出了碳排放计算方法,并对华东地区的建筑陶瓷碳排放进行了分析计算,讨论了减排方向。结果表明,建筑陶瓷生命周期碳排放为0.714 kgCO_2/kg。其中,产品生产阶段的碳排放所占比重最高,为81.23%。  相似文献   

14.
从可持续发展的战略考虑,选用对资源消耗尽可能少、对生态环境影响小、循环再利用率高的生态环境建筑材料,是21世纪发展新型建筑体系的大趋势。本文基于生命周期评价理论(LCA),建立建筑全生命周期碳排放的核算模型。同时,为探讨减少建筑碳排放的途径和合适结构类型、结构材料的选择,本文从重型结构(钢结构、钢筋混凝土结构)和轻型结构(木结构、轻钢结构)两种不同的结构类型及相应的结构材料入手,对其全生命周期的碳排放进行定量测算和对比分析。结果表明,每年单位建筑面积碳排放,轻型结构〈重型结构;木结构〈轻钢结构〈钢结构〈钢筋混凝土结构。  相似文献   

15.
基于全生命周期的建筑工程碳排放计算模型   总被引:2,自引:0,他引:2  
为核算建筑全生命周期的碳排放量,将建筑生命周期分为设计阶段、物化阶段、使用维护阶段与拆除回收处理阶段,将建筑全生命周期的碳排放活动归结为能源、建筑材料、机械的碳排放,在求出每单位能源、建筑材料、机械的碳排放量的基础上,运用碳排放因子方法计算二氧化碳排放量,并给出具体计算公式,构建全生命周期碳排放核算模型。结合具体实例进行实证应用,简要分析了各阶段的碳排放量比例,为建筑业的碳排放核算研究提供参考。  相似文献   

16.
浅谈轻型木结构在住宅建筑中的应用   总被引:5,自引:0,他引:5  
本文介绍轻型木结构体系,论述了轻型木结构住宅建筑的优点和发展现状,分析了其在中国的前景,并提出有必要在中国适当发展轻型木结构住宅。  相似文献   

17.
杨勇 《北方建筑》2022,(4):21-25
目前,由于温室气体大量排放导致的全球变暖已成为全球关注的焦点问题,全生命周期理论与建筑信息模型技术的结合能够使碳排放测算更加具体、科学,有助于推动我国的低碳经济发展。本文基于建筑项目的全生命周期理论和BIM技术,详细探讨了建筑碳排放的测算方法,首先介绍了常见的测算方法,然后基于BIM技术建立建筑项目各阶段如设计规划、物化等阶段的碳排放测算模型,并结合某建筑工程进行测算,最后提出减少建筑碳排放量的策略,以供相关研究参考。  相似文献   

18.
建筑材料全生命周期碳排放信息化集成管理是低碳建筑碳排放管理中亟需解决的关键问题,针对建筑材料碳排放信息化集成管理的功能需求,在建筑材料全生命周期理论基础上,以BIM为技术核心,以B/S为网络,架构建筑材料全生命周期碳排放信息化集成管理体系。研究表明,该体系能够完成建筑材料全生命周期各阶段参与方信息交流、共享和协同工作,实现建筑材料全生命周期碳排放的集成管理。  相似文献   

19.
本介绍了什么是轻型钢结构和轻型木结构住宅体系及其发展历史,并从技术性能、经济效益、社会效益、节能环保和可持续发展等诸多方面对这两种体系进行了对比分析,结合中国国情和现阶段行业发展状况提出了在中国推广这两种住宅体系的意义。  相似文献   

20.
《四川建材》2017,(1):1-3
以上海地区使用的P·I型硅酸盐水泥为例,对水泥的生命周期碳排放进行了研究。通过资料分析得知,上海地区使用的水泥及熟料主要来自江苏省。在合理假定进沪水泥的运输方式及路程的前提下,计算了从水泥原材料开采到成品运输至使用企业大门的水泥生命周期碳排放量。结果显示,1tP·I型硅酸盐在生命周期将产生约1tCO2,其中92%的碳排放来自生料煅烧时的矿物分解和工厂生产能耗,6%的碳排放来自水泥成品运输。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号