首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous reports suggest that neuroendocrine disturbances in patients with traumatic brain injury (TBI) or aneurysmal subarachnoid hemorrhage (SAH) may still develop or resolve months or even years after the trauma. We investigated a cohort of n = 168 patients (81 patients after TBI and 87 patients after SAH) in whom hormone levels had been determined at various time points to assess the course and pattern of hormonal insufficiencies. Data were analyzed using three different criteria: (1) patients with lowered basal laboratory values; (2) patients with lowered basal laboratory values or the need for hormone replacement therapy; (3) diagnosis of the treating physician. The first hormonal assessment after a median time of three months after the injury showed lowered hormone laboratory test results in 35% of cases. Lowered testosterone (23.1% of male patients), lowered estradiol (14.3% of female patients) and lowered insulin-like growth factor I (IGF-I) values (12.1%) were most common. Using Criterion 2, a higher prevalence rate of 55.6% of cases was determined, which correlated well with the prevalence rate of 54% of cases using the physicians’ diagnosis as the criterion. Intraindividual changes (new onset insufficiency or recovery) were predominantly observed for the somatotropic axis (12.5%), the gonadotropic axis in women (11.1%) and the corticotropic axis (10.6%). Patients after TBI showed more often lowered IGF-I values at first testing, but normal values at follow-up (p < 0.0004). In general, most patients remained stable. Stable hormone results at follow-up were obtained in 78% (free thyroxine (fT4) values) to 94.6% (prolactin values).  相似文献   

2.
Repetitive closed head injury (rCHI) is commonly encountered in young athletes engaged in contact and collision sports. Traumatic brain injury (TBI) including rCHI has been reported to be an important risk factor for several tauopathies in studies of adult humans and animals. However, the link between rCHI and the progression of tau pathology in adolescents remains to be elucidated. We evaluated whether rCHI can trigger the initial acceleration of pathological tau in adolescent mice and impact the long-term outcomes post-injury. To this end, we subjected adolescent transgenic mice expressing the P301S tau mutation to mild rCHI and assessed tau hyperphosphorylation, tangle formation, markers of neuroinflammation, and behavioral deficits at 40 days post rCHI. We report that rCHI did not accelerate tau pathology and did not worsen behavioral outcomes compared to control mice. However, rCHI induced cortical and hippocampal microgliosis and corpus callosum astrocytosis in P301S mice by 40 days post-injury. In contrast, we did not find significant microgliosis or astrocytosis after rCHI in age-matched WT mice or sham-injured P301S mice. Our data suggest that neuroinflammation precedes the development of Tau pathology in this rCHI model of adolescent repetitive mild TBI.  相似文献   

3.
Traumatic brain injuries (TBIs) are a significant health problem both in the United States and worldwide with over 27 million cases being reported globally every year. TBIs can vary significantly from a mild TBI with short-term symptoms to a moderate or severe TBI that can result in long-term or life-long detrimental effects. In the case of a moderate to severe TBI, the primary injury causes immediate damage to structural tissue and cellular components. This may be followed by secondary injuries that can be the cause of chronic and debilitating neurodegenerative effects. At present, there are no standard treatments that effectively target the primary or secondary TBI injuries themselves. Current treatment strategies often focus on addressing post-injury symptoms, including the trauma itself as well as the development of cognitive, behavioral, and psychiatric impairment. Additional therapies such as pharmacological, stem cell, and rehabilitative have in some cases shown little to no improvement on their own, but when applied in combination have given encouraging results. In this review, we will abridge and discuss some of the most recent research advances in stem cell therapies, advanced engineered biomaterials used to support stem transplantation, and the role of rehabilitative therapies in TBI treatment. These research examples are intended to form a multi-tiered perspective for stem-cell therapies used to treat TBIs; stem cells and stem cell products to mitigate neuroinflammation and provide neuroprotective effects, biomaterials to support the survival, migration, and integration of transplanted stem cells, and finally rehabilitative therapies to support stem cell integration and compensatory and restorative plasticity.  相似文献   

4.
Magnesium (Mg) is involved in the regulation of metabolism and in the maintenance of the homeostasis of all the tissues, including the brain, where it harmonizes nerve signal transmission and preserves the integrity of the blood–brain barrier. Mg deficiency contributes to systemic low-grade inflammation, the common denominator of most diseases. In particular, neuroinflammation is the hallmark of neurodegenerative disorders. Starting from a rapid overview on the role of magnesium in the brain, this narrative review provides evidences linking the derangement of magnesium balance with multiple sclerosis, Alzheimer’s, and Parkinson’s diseases.  相似文献   

5.
The incidences of traumatic brain injuries (TBIs) are increasing globally because of expanding population and increased dependencies on motorized vehicles and machines. This has resulted in increased socio-economic burden on the healthcare system, as TBIs are often associated with mental and physical morbidities with lifelong dependencies, and have severely limited therapeutic options. There is an emerging need to identify the molecular mechanisms orchestrating these injuries to life-long neurodegenerative disease and a therapeutic strategy to counter them. This review highlights the dynamics and role of choline-containing phospholipids during TBIs and how they can be used to evaluate the severity of injuries and later targeted to mitigate neuro-degradation, based on clinical and preclinical studies. Choline-based phospholipids are involved in maintaining the structural integrity of the neuronal/glial cell membranes and are simultaneously the essential component of various biochemical pathways, such as cholinergic neuronal transmission in the brain. Choline or its metabolite levels increase during acute and chronic phases of TBI because of excitotoxicity, ischemia and oxidative stress; this can serve as useful biomarker to predict the severity and prognosis of TBIs. Moreover, the effect of choline-replenishing agents as a post-TBI management strategy has been reviewed in clinical and preclinical studies. Overall, this review determines the theranostic potential of choline phospholipids and provides new insights in the management of TBI.  相似文献   

6.
Traumatic brain injury (TBI) signifies a major cause of death and disability. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Astrocytes and microglia, cells of the CNS, are considered the key players in initiating an inflammatory response after injury. Several evidence suggests that activation of astrocytes/microglia and ROS/LPO have the potential to cause more harmful effects in the pathological processes following traumatic brain injury (TBI). Previous studies have established that lupeol provides neuroprotection through modulation of inflammation, oxidative stress, and apoptosis in Aβ and LPS model and neurodegenerative disease. However, the effects of lupeol on apoptosis caused by inflammation and oxidative stress in TBI have not yet been investigated. Therefore, we explored the role of Lupeol on antiapoptosis, anti-inflammatory, and antioxidative stress and its potential mechanism following TBI. In these experiments, adult male mice were randomly divided into four groups: control, TBI, TBI+ Lupeol, and Sham group. Western blotting, immunofluorescence staining, and ROS/LPO assays were performed to investigate the role of lupeol against neuroinflammation, oxidative stress, and apoptosis. Lupeol treatment reversed TBI-induced behavioral and memory disturbances. Lupeol attenuated TBI-induced generation of reactive oxygen species/lipid per oxidation (ROS/LPO) and improved the antioxidant protein level, such as nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1) in the mouse brain. Similarly, our results indicated that lupeol treatment inhibited glial cell activation, p-NF-κB, and downstream signaling molecules, such as TNF-α, COX-2, and IL-1β, in the mouse cortex and hippocampus. Moreover, lupeol treatment also inhibited mitochondrial apoptotic signaling molecules, such as caspase-3, Bax, cytochrome-C, and reversed deregulated Bcl2 in TBI-treated mice. Overall, our study demonstrated that lupeol inhibits the activation of astrocytes/microglia and ROS/LPO that lead to oxidative stress, neuroinflammation, and apoptosis followed by TBI.  相似文献   

7.
Traumatic brain injury (TBI) disrupts the blood–brain barrier (BBB). Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI and to be overexpressed in the absence of apolipoprotein E (ApoE). Bevacizumab, a VEGF inhibitor, demonstrated neuroprotective activity in several models of TBI. However, the effects of bevacizumab on Apo-E deficient mice are not well studied. The present study aimed to evaluate VEGF expression and the effects of bevacizumab on BBB and neuroinflammation in ApoE−/− mice undergoing TBI. Furthermore, for the first time, this study evaluates the effects of bevacizumab on the long-term consequences of TBI, such as atherosclerosis. The results showed that motor deficits induced by controlled cortical impact (CCI) were accompanied by increased brain edema and VEGF expression. Treatment with bevacizumab significantly improved motor deficits and significantly decreased VEGF levels, as well as brain edema compared to the control group. Furthermore, the results showed that bevacizumab preserves the integrity of the BBB and reduces the neuroinflammation induced by TBI. Regarding the effects of bevacizumab on atherosclerosis, it was observed for the first time that its ability to modulate VEGF in the acute phase of head injury prevents the acceleration of atherosclerosis. Therefore, the present study demonstrates not only the neuroprotective activity of bevacizumab but also its action on the vascular consequences related to TBI.  相似文献   

8.
Traumatic brain injury (TBI) is one of the first causes of death and disability in the world. Because of the lack of macroscopical or histologic evidence of the damage, the forensic diagnosis of TBI could be particularly difficult. Considering that the activation of autophagy in the brain after a TBI is well documented in literature, the aim of this review is to find all autophagy immunohistological protein markers that are modified after TBI to propose a method to diagnose this eventuality in the brain of trauma victims. A systematic literature review on PubMed following PRISMA 2020 guidelines has enabled the identification of 241 articles. In all, 21 of these were enrolled to identify 24 markers that could be divided into two groups. The first consisted of well-known markers that could be considered for a first diagnosis of TBI. The second consisted of new markers recently proposed in the literature that could be used in combination with the markers of the first group to define the elapsed time between trauma and death. However, the use of these markers has to be validated in the future in human tissue by further studies, and the influence of other diseases affecting the victims before death should be explored.  相似文献   

9.
Prohibitin2 (PHB2) is a ubiquitous, evolutionarily strongly conserved protein. It is one of the components of the prohibitin complex, which comprises two highly homologous subunits, PHB1 and PHB2. PHB2 is present in various cellular compartments including the nucleus and mitochondria. Recent studies have identified PHB2 as a multifunctional protein that controls cell proliferation, apoptosis, cristae morphogenesis and the functional integrity of mitochondria. However its distribution and function in the central nervous system (CNS) are not well understood. In this study, we examined PHB2 expression and cellular localization in rats after acute traumatic brain injury (TBI). Western Blot analysis showed PHB2 level was significantly enhanced at five days after injury compared to control, and then declined during the following days. The protein expression of PHB2 was further analyzed by immunohistochemistry. In comparison to contralateral cerebral cortex, we observed a highly significant accumulation of PHB2 at the ipsilateral brain. Immunofluorescence double-labeling showed that PHB2 was co-expressed with NeuN, GFAP. Besides, PHB2 also colocalized with activated caspase-3 and PCNA. To further investigate the function of PHB2, primary cultured astrocytes and the neuronal cell line PC12 were employed to establish a proliferation model and an apoptosis model, respectively, to simulate the cell activity after TBI to a certain degree. Knocking down PHB2 by siRNA partly increased the apoptosis level of PC12 stimulated by H2O2. While the PHB2 was interrupted by siRNA, the proliferation level of primary cultured astrocytes was inhibited notably than that in the control group. Together with our data, we hypothesized that PHB2 might play an important role in CNS pathophysiology after TBI.  相似文献   

10.
Phenoxybenzamine (PBZ) is an FDA approved α-1 adrenergic receptor antagonist that is currently used to treat symptoms of pheochromocytoma. However, it has not been studied as a neuroprotective agent for traumatic brain injury (TBI). While screening neuroprotective candidates, we found that phenoxybenzamine reduced neuronal death in rat hippocampal slice cultures following exposure to oxygen glucose deprivation (OGD). Using this system, we found that phenoxybenzamine reduced neuronal death over a broad dose range (0.1 μM–1 mM) and provided efficacy when delivered up to 16 h post-OGD. We further tested phenoxybenzamine in the rat lateral fluid percussion model of TBI. When administered 8 h after TBI, phenoxybenzamine improved neurological severity scoring and foot fault assessments. At 25 days post injury, phenoxybenzamine treated TBI animals also showed a significant improvement in both learning and memory compared to saline treated controls. We further examined gene expression changes within the cortex following TBI. At 32 h post-TBI phenoxybenzamine treated animals had significantly lower expression of pro-inflammatory signaling proteins CCL2, IL1β, and MyD88, suggesting that phenoxybenzamine may exert a neuroprotective effect by reducing neuroinflammation after TBI. These data suggest that phenonxybenzamine may have application in the treatment of TBI.  相似文献   

11.
Traumatic brain injury is one of the leading causes of mortality and morbidity in the world with no current pharmacological treatment. The role of BDNF in neural repair and regeneration is well established and has also been the focus of TBI research. Here, we review experimental animal models assessing BDNF expression following injury as well as clinical studies in humans including the role of BDNF polymorphism in TBI. There is a large heterogeneity in experimental setups and hence the results with different regional and temporal changes in BDNF expression. Several studies have also assessed different interventions to affect the BDNF expression following injury. Clinical studies highlight the importance of BDNF polymorphism in the outcome and indicate a protective role of BDNF polymorphism following injury. Considering the possibility of affecting the BDNF pathway with available substances, we discuss future studies using transgenic mice as well as iPSC in order to understand the underlying mechanism of BDNF polymorphism in TBI and develop a possible pharmacological treatment.  相似文献   

12.
Traumatic brain injury (TBI) disrupts thalamic and cortical integrity. The effect of post-injury reorganization and plasticity in thalamocortical pathways on the functional outcome remains unclear. We evaluated whether TBI causes structural changes in the thalamocortical axonal projection terminals in the primary somatosensory cortex (S1) that lead to hyperexcitability. TBI was induced in adult male Sprague Dawley rats with lateral fluid-percussion injury. A virus carrying the fluorescent-tagged opsin channel rhodopsin 2 transgene was injected into the ventroposterior thalamus. We then traced the thalamocortical pathways and analyzed the reorganization of their axonal terminals in S1. Next, we optogenetically stimulated the thalamocortical relays from the ventral posterior lateral and medial nuclei to assess the post-TBI functionality of the pathway. Immunohistochemical analysis revealed that TBI did not alter the spatial distribution or lamina-specific targeting of projection terminals in S1. TBI reduced the axon terminal density in the motor cortex by 44% and in S1 by 30%. A nematic tensor-based analysis revealed that in control rats, the axon terminals in layer V were orientated perpendicular to the pial surface (60.3°). In TBI rats their orientation was more parallel to the pial surface (5.43°, difference between the groups p < 0.05). Moreover, the level of anisotropy of the axon terminals was high in controls (0.063) compared with TBI rats (0.045, p < 0.05). Optical stimulation of the sensory thalamus increased alpha activity in electroencephalography by 312% in controls (p > 0.05) and 237% (p > 0.05) in TBI rats compared with the baseline. However, only TBI rats showed increased beta activity (33%) with harmonics at 5 Hz. Our findings indicate that TBI induces reorganization of thalamocortical axonal terminals in the perilesional cortex, which alters responses to thalamic stimulation.  相似文献   

13.
This study aimed to assess the neuro-regenerative properties of co-ultramicronized PEALut (Glialia®), composed of palmitoylethanolamide (PEA) and the flavonoid luteolin (Lut), in an in vivo model of traumatic brain injury (TBI) and patients affected by moderate TBI. An increase in neurogenesis was seen in the mice at 72 h and 7 d after TBI. The co-ultra PEALut treatment helped the neuronal reconstitution process to restore the basal level of both novel and mature neurons; moreover, it induced a significant upregulation of the neurotrophic factors, which ultimately led to progress in terms of memory recall during behavioral testing. Moreover, our preliminary findings in a clinical trial suggested that Glialia® treatment facilitated neural recovery on working memory. Thus, co-ultra PEALut (Glialia®) could represent a valuable therapeutic agent for intensifying the endogenous repair response in order to better treat TBI.  相似文献   

14.
The opening of the mitochondrial permeability transition pore (mPTP) has emerged as a pivotal event following traumatic brain injury (TBI). Evidence showing the impact of the translocator protein (TSPO) over mPTP activity has prompted several studies exploring the effect of TSPO ligands, including etifoxine, on the outcome of traumatic brain injury (TBI). Mitochondrial respiration was assessed by respirometry in isolated rat brain mitochondria (RBM) by measurements of oxidative phosphorylation capacity (OXPHOS). The addition of calcium to RBM was used to induce mitochondrial injury and resulted in significant OXPHOS reduction that could be reversed by preincubation of RBM with etifoxine. Sensorimotor and cognitive functions were assessed following controlled cortical impact and compared in vehicle and etifoxine-treated animals. There was no difference between the vehicle and etifoxine groups for sensorimotor functions as assessed by rotarod. In contrast, etifoxine resulted in a significant improvement of cognitive functions expressed by faster recovery in Morris water maze testing. The present findings show a significant neuroprotective effect of etifoxine in TBI through restoration of oxidative phosphorylation capacity associated with improved behavioral and cognitive outcomes. Since etifoxine is a registered drug used in common clinical practice, implementation in a phase II study may represent a reasonable step forward.  相似文献   

15.
Hippocampal dysfunction contributes to multiple traumatic brain injury sequala. Female rodents’ outcome is superior to male which has been ascribed the neuroprotective sex hormones 17β-estradiol and progesterone. Cytochrome P450 1B1 (CYP1B1) is an oxidative enzyme influencing the neuroinflammatory response by creating inflammatory mediators and metabolizing neuroprotective 17β-estradiol and progesterone. In this study, we aimed to describe hippocampal CYP1B1 mRNA expression, protein presence of CYP1B1 and its key redox partner Cytochrome P450 reductase (CPR) in both sexes, as well as the effect of penetrating traumatic brain injury (pTBI). A total 64 adult Sprague Dawley rats divided by sex received pTBI or sham-surgery and were assigned survival times of 1-, 3-, 5- or 7 days. CYP1B1 mRNA was quantified using in-situ hybridization and immunohistochemistry performed to verify protein colocalization. CYP1B1 mRNA expression was present in all subregions but greatest in CA2 irrespective of sex, survival time or intervention. At 3-, 5- and 7 days post-injury, expression in CA2 was reduced in male rats subjected to pTBI compared to sham-surgery. Females subjected to pTBI instead exhibited increased expression in all CA subregions 3 days post-injury, the only time point expression in CA2 was greater in females than in males. Immunohistochemical analysis confirmed neuronal CYP1B1 protein in all hippocampal subregions, while CPR was limited to CA1 and CA2. CYP1B1 mRNA is constitutively expressed in both sexes. In response to pTBI, females displayed a more urgent but brief regulatory response than males. This indicates there may be sex-dependent differences in CYP1B1 activity, possibly influencing inflammation and neuroprotection in pTBI.  相似文献   

16.
Although traumatic brain injury (TBI) causes hospitalizations and mortality worldwide, there are no approved neuroprotective treatments, partly due to a poor understanding of the molecular mechanisms underlying TBI neuropathology and neuroprotection. We previously reported that the administration of low-dose methamphetamine (MA) induced significant functional/cognitive improvements following severe TBI in rats. We further demonstrated that MA mediates neuroprotection in part, via dopamine-dependent activation of the PI3K-AKT pathway. Here, we further investigated the proteomic changes within the rat cortex and hippocampus following mild TBI (TM), severe TBI (TS), or severe TBI plus MA treatment (TSm) compared to sham operated controls. We identified 402 and 801 altered proteins (APs) with high confidence in cortical and hippocampal tissues, respectively. The overall profile of APs observed in TSm rats more closely resembled those seen in TM rather than TS rats. Pathway analysis suggested beneficial roles for acute signaling through IL-6, TGFβ, and IL-1β. Moreover, changes in fibrinogen levels observed in TSm rats suggested a potential role for these proteins in reducing/preventing TBI-induced coagulopathies. These data facilitate further investigations to identify specific pathways and proteins that may serve as key targets for the development of neuroprotective therapies.  相似文献   

17.
Hippocampal damage after traumatic brain injury (TBI) is associated with late posttraumatic conditions, such as depression, cognitive decline and epilepsy. Mechanisms of selective hippocampal damage after TBI are not well understood. In this study, using rat TBI model (lateral fluid percussion cortical injury), we assessed potential association of immediate posttraumatic seizures and changes in corticosterone (CS) levels with neuroinflammation and neuronal cell loss in the hippocampus. Indices of distant hippocampal damage (neurodegeneration and neuroinflammation) were assessed using histological analysis (Nissl staining, Iba-1 immunohistochemical staining) and ELISA (IL-1β and CS) 1, 3, 7 and 14 days after TBI or sham operation in male Wistar rats (n = 146). IL-1β was elevated only in the ipsilateral hippocampus on day 1 after trauma. CS peak was detected on day 3 in blood, the ipsilateral and contralateral hippocampus. Neuronal cell loss in the hippocampus was demonstrated bilaterally; in the ipsilateral hippocampus it started earlier than in the contralateral. Microglial activation was evident in the hippocampus bilaterally on day 7 after TBI. The duration of immediate seizures correlated with CS elevation, levels of IL-1β and neuronal loss in the hippocampus. The data suggest potential association of immediate post-traumatic seizures with CS-dependent neuroinflammation-mediated distant hippocampal damage.  相似文献   

18.
Neuroinflammation is a major component of central nervous system (CNS) injuries and neurological diseases, including Alzheimer’s disease, multiple sclerosis, neuropathic pain, and brain trauma. The activation of innate immune cells at the damage site causes the release of pro-inflammatory cytokines and chemokines, which alter the functionality of nearby tissues and might mediate the recruitment of leukocytes to the injury site. If this process persists or is exacerbated, it prevents the adequate resolution of the inflammation, and ultimately enhances secondary damage. Adenosine 5′ triphosphate (ATP) is among the molecules released that trigger an inflammatory response, and it serves as a chemotactic and endogenous danger signal. Extracellular ATP activates multiple purinergic receptors (P2X and P2Y) that have been shown to promote neuroinflammation in a variety of CNS diseases. Recent studies have shown that Pannexin-1 (Panx1) channels are the principal conduits of ATP release from dying cells and innate immune cells in the brain. Herein, we review the emerging evidence that directly implicates Panx-1 channels in the neuroinflammatory response in the CNS.  相似文献   

19.
20.
Brain injury/concussion is a growing epidemic throughout the world. Although evidence supports association between traumatic brain injury (TBI) and disturbance in brain glucose metabolism, the underlying molecular mechanisms are not well established. Previously, we reported the release of cellular prion protein (PrPc) from the brain to circulation following TBI. The PrPc level was also found to be decreased in insulin-resistant rat brains. In the present study, we investigated the molecular link between PrPc and brain insulin resistance in a single and repeated mild TBI-induced mouse model. Mild TBI was induced in mice by dropping a weight (~95 g at 1 m high) on the right side of the head. The procedure was performed once and thrice (once daily) for single (SI) and repeated induction (RI), respectively. Micro PET/CT imaging revealed that RI mice showed significant reduction in cortical, hippocampal and cerebellum glucose uptake compared to SI and control. Mice that received RI also showed significant motor and cognitive deficits. In co-immunoprecipitation, the interaction between PrPc, flotillin and Cbl-associated protein (CAP) observed in the control mice brains was disrupted by RI. Lipid raft isolation showed decreased levels of PrPc, flotillin and CAP in the RI mice brains. Based on observation, it is clear that PrPc has an interaction with CAP and the dislodgment of PrPc from cell membranes may lead to brain insulin resistance in a mild TBI mouse model. The present study generated a new insight into the pathogenesis of brain injury, which may result in the development of novel therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号