首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用溶液聚合法合成了以聚四氢呋喃(PTMG)为软段、4,4’-偶氮苯二甲酸(Azoba)和六亚甲基二异氰酸酯(HDI)为硬段、双(2-羟基乙基)二硫醚(HEDS)为扩链剂的不同硬段比例的形状记忆聚氨酯(SMPU_s)。红外光谱表征了聚氨酯薄膜化学结构;分别通过热重分析、差示扫描量热分析、动态力学分析(DMA)探究了硬段对聚氨酯材料热稳定性、熔融温度及形状记忆性能的影响;记录了SMPU_2在紫外光照刺激下响应、发生形变的过程;用划痕修复测试和接触角法表征自愈合能力。结果表明,调控软硬段比例可得到具有差异形状记忆性能的SMPU_s。DMA测试中SMPU_s的平均固定率高于75%,回复率均高于95%,其中硬段含量为44%的SMPU_2形状记忆性能最佳,固定率达91%,回复率达99%。引入含双硫键的单体,SMPU_s具有一定自愈合性能。其中SMPU_5在40℃修复30 min,能修复表面划痕,力学测试表征的修复性能在60℃修复120 min修复率可达90%。  相似文献   

2.
形状记忆功能化生物聚氨酯在医用植入体材料中备受关注,而聚氨酯的形状记忆性能与其微相分离结构密切相关。文中以可降解聚己内酯二醇(PCL-diol)、脂环形异佛尔酮二异氰酸酯(IPDI)、1,4-丁二醇(BDO)为单体通过两步法合成生物聚氨酯(PU),以溶液共混的方式加入PU基体中,制备了一系列聚氨酯/羟基磷灰石(PU/HA)复合材料。通过场发射扫描电子显微镜、傅里叶变换红外光谱、热失重分析和动态力学热分析等不同表征方法研究了HA的引入对PU基体微相分离的影响,及其与宏观形状记忆性能的关系,并考察了材料的生物安全性。结果表明,HA的引入明显促进了PU的微相分离,随着HA含量的增加,硬段与软段的玻璃化转变温度差值越大,表明微相分离程度越高。在HA质量分数低于15%时,HA的含量越高,形状回复越快,表明微相分离程度越高,形状记忆性能越好。L929细胞毒性测试结果显示,PU/HA具有良好的细胞安全性,在医用骨修复领域有潜在的应用价值。  相似文献   

3.
形状记忆聚氨酯因具有热致形状记忆特性而引起世界的极大兴趣,自20世纪80年代以来迅速发展成为一种新型的功能材料.本文以1-甲基-2-吡咯烷酮(NMP)为溶剂,采用溶液混合法制备了形状记忆聚氨酯/气相生长碳纤维复合材料薄膜,利用扫描电镜观察了气相生长碳纤维在形状记忆聚氨酯中的分散性,测试分析了加入气相生长碳纤维对形状记忆聚氨酯的热致形状记忆性能的影响.扫描电镜观察显示:气相生长碳纤维含量达到3%(质量分数,下同)时在形状记忆聚氨酯中开始有少量团聚现象,含量达到5%后团聚现象比较明显;形状记忆性能测试发现:加入气相生长碳纤维不同程度的降低了复合材料的热致形状记忆性能,根据对形状记忆聚氨酯中两相结构的相分离程度及软段结晶情况的不同影响而反映为对形状记忆性能的不同影响.  相似文献   

4.
热可逆自修复聚氨酯弹性体的制备及表征   总被引:1,自引:0,他引:1  
为探究本征型自修复聚氨酯材料结构与性能的关系,平衡其自修复效率与强度之间的矛盾,采用六亚乙基二异氰酸酯(HDI)三聚体作交联剂,4,4-二氨基二苯二硫醚(AFD)作扩链剂,将可逆双硫键引入聚酯型聚氨酯弹性体中。研究发现:制备的自修复聚氨酯弹性体拉伸强度可达7.7MPa,在60℃,修复时间为24h的条件下,基于拉伸强度的自修复效率高达97.4%;而普通不含有双硫键(只含氢键作用)的弹性体拉伸强度为9.3MPa,在同等条件下的自修复效率为58.0%,表明双硫键的存在使得弹性体自修复效率在原来的基础上提高了67.9%。制备的弹性体具有多次自修复能力,其二次自修复效率为62.3%。  相似文献   

5.
以苯硼酸(PBA)作为苯氧树脂(PO)的固化剂,采用一步法合成了一种含有可逆硼酸酯键(B—O—C)的新型苯氧树脂(POPBA30),并制备了碳纤维增强复合材料(CFRPs)。探讨了POPBA30树脂的固化过程和热性能,以及CFRPs的力学性能、热力学性能、降解性能、自修复性能及耐溶剂性能。利用红外光谱对PO、POPBA30、再生苯氧树脂(R-PO)和再生苯硼酸(R-PBA)进行了结构表征。通过差示扫描量热分析测得POPBA30的Tg高达206℃,热重分析测得POPBA30在空气和氮气气氛中的Td5分别为411℃和399℃,800℃的质量保留率均高于38%;POPBA30还具有良好的耐化学性,可以在常见的溶剂中稳定存在21 d。以POPBA30为基体制备复合材料(CF/POPBA30),通过万能试验机测得其弯曲强度、层间剪切强度和抗张强度分别为975 MPa,55MPa和734 MPa。CF/POPBA30还具有优异的自修复性能,自修复效率约为85.6%。此外,CF/POPBA30可在室温下99%的乙醇水溶液中发生绿色降解,并实现对碳纤维和苯氧...  相似文献   

6.
聚氨酯(PU)作为注浆材料在矿井下有广泛的应用,但由于其在固化过程中放热,可能导致自燃,给井下应用带来安全隐患,因此提高聚氨酯材料的阻燃性能是非常重要的。以磷酸和无水哌嗪为原料合成了一种N-P协同型无卤阻燃剂聚磷酸哌嗪。以红外光谱和热重分析对其结构以及热性能进行表征;进一步将聚磷酸哌嗪以不同添加量对聚氨酯进行阻燃改性,研究改性后阻燃聚氨酯的各种性能。结果表明:聚磷酸哌嗪对PU具有明显的促进成炭作用。随着添加量的增加,极限氧指数(LOI)增长显著,其中PU-聚磷酸哌嗪20%的LOI值可达28.5%,UL-94的等级可达V-0级,属于难燃自熄材料,可以达到矿用注浆材料的新阻燃标准。扫描电镜测试结果表明,其燃烧后残炭表面为致密炭层,具有凝聚相阻燃特征。力学测试结果表明,随着聚磷酸哌嗪含量的增加,聚氨酯的力学性能会有所降低,但添加量为20%时,抗压强度仍然大于40MPa,满足最新安全标准要求。  相似文献   

7.
将E51环氧树脂引入基于Diels-Alder反应的热可逆聚氨酯,制备出环氧树脂改性热可逆自修复聚氨酯材料。引入环氧树脂,可提高改性热可逆聚氨酯的拉伸强度、杨氏模量、冲击韧性和邵氏硬度且保持较高的断裂伸长率。添加20%的环氧树脂制备的环氧树脂改性热可逆聚氨酯材料兼具优异的强度、韧性、硬度等力学性能和良好自修复性能。当环氧树脂改性热可逆聚氨酯出现裂纹裂缝等损伤后,在130℃处理20 min及60℃处理24 h便可修复损伤,并可实现同一部位多次损伤的重复自修复。力学性能提高的原因,是刚性环氧树脂相与聚氨酯弹性相相互缠结形成互穿聚合物网络结构产生的“强迫互溶”和“协同效应”;而多次重复自修复则归因于热可逆Diels-Alder反应和分子链热运动的协同作用。  相似文献   

8.
采用4,4′-二苯基甲烷二异氰酸酯(MDI)、聚己内酯二醇(PCL2000)、1,4-丁二醇(BDO)、辛酸亚锡(T-9)、食用盐等原料,通过填充法制得高密度形状记忆聚氨酯泡沫材料,表征并测试了其形貌特征、热性能、力学性能及形状记忆性能。研究结果表明:采用填充法制备高密度形状记忆聚氨酯泡沫加工工艺简单、易操作,泡沫具有高密度(0.65g/cm~3)、高压缩强度(0.37MPa)和优异的形状记忆性能。  相似文献   

9.
玻璃纤维填充聚氨酯改性环氧树脂灌封材料的性能   总被引:1,自引:0,他引:1  
采用真空灌注工艺,以磨碎玻璃纤维(MG)为填料,通过聚氨酯(PU)对4,5环氧环己烷1,2-二甲酸二缩水甘油酯(TDE-85)、四氢邻苯二甲酸二缩水甘油酯(711)、二酚基丙烷环氧树脂(E-51)改性,研究了MG/PU/TDE-85灌封材料、MG/PU/711灌封材料及MG/PU/E-51灌封材料的力学性能、热性能和电性能。研究结果表明,MG/PU/TDE-85灌封材料的拉伸强度、冲击强度、玻璃化转变温度、体积电阻率均为最大,分别达到79.72MPa、17.83kJ/m2、144℃和2.78×1015Ω.cm,具有最佳的综合性能。  相似文献   

10.
采用一步法制备具有热可逆性的透明自修复聚氨酯薄膜(PU-DA)。通过物理结合方式加入氨基修饰的石墨烯量子点(NH2-GQDs),最终制备出具有热可逆性的自修复石墨烯量子点/聚氨酯透明复合膜(NH2-GQDs/PU-DA)。采用傅里叶红外光谱仪、偏光显微镜和万能拉力机等手段进行结构和性能的分析。结果表明:通过热可逆反应(Diels-Alder)键的引入,可使聚氨酯薄膜在一定温度下具有自修复性能的同时,仍保持较好的柔韧性,拉伸强度和断裂伸长率最优分别达到1.437MPa和117.4%。通过应力-应变测试发现,NH2-GQDs的加入在一定程度上增强了聚氨酯薄膜的力学性能,并改善了聚氨酯薄膜的疏水性。  相似文献   

11.
以液化4,4'-二苯基甲烷二异氰酸酯(MDI)(MM103)、聚碳酸酯二醇(PCDL)、环己烷二甲醇(CHDM)为主要原料,水和二氯一氟乙烷为发泡剂,三乙胺和二月桂酸二丁基锡为催化剂,合成了一系列聚碳酸酯型形状记忆聚氨酯泡沫(SMPUF)。通过密度测试、压缩性能测试、显微镜测试、差示扫描量热测试、形状记忆性能测试,研究了发泡剂配合比对泡沫性能造成的影响。结果表明,在去离子水∶二氯一氟乙烷的用量摩尔配合比为4∶0条件下,形状记忆聚氨酯泡沫的密度为143kg/m~3,膨胀率74%,压缩强度0.42MPa,形状恢复率为100%,形状恢复时间为30s,并具有较好的孔结构和热性能。  相似文献   

12.
以六亚甲基二异氰酸酯(HDI)为芯材,通过界面聚合法和溶胶-凝胶原位生成法制得聚氨酯(PU)/二氧化硅(SiO_2)-六亚甲基二异氰酸酯(PU/SiO_2-HDI)杂化微胶囊。研究了3种催化方式酸催化、碱催化、酸碱催化对杂化微胶囊产率、密封性、热稳定性以及微观形貌的影响,结果表明:与未杂化微胶囊相比,PU/SiO_2-HDI杂化微胶囊的上述性能均有所提高,其中酸碱杂化微胶囊的粒径较大,分布均一,产率为71.24%,在168h浸泡条件下的泄漏率为12.03%,初始分解温度为269.43℃,在杂化微胶囊中具有最佳的性能。同时,将酸碱杂化微胶囊包埋PU防腐涂料基体中,形成的酸碱杂化涂层在盐雾腐蚀168h条件下,其划痕处被愈合,且未出现明显的腐蚀现象,具有较好的自修复和防腐作用。  相似文献   

13.
采用两步法合成了以聚四氢呋喃(PTMG)为软段,4,4′-二苯基甲烷二异氰酸酯(MDI)、扩链剂2,2-二羟甲基丙酸(DMPA)和封端剂4-(2-(吡啶-4-基)乙烯基)苯酚为硬段的形状记忆聚氨酯(PTMGUs)。通过傅里叶变换红外光谱和核磁共振氢谱等表征了其结构,将聚氨酯制成薄膜后,分别通过热重分析、差示扫描量热及循环拉力动态力学分析等测试研究了硬段含量对其热性能和形状记忆性能的影响,摄像记录其形状回复过程。结果表明,不同硬段含量的PTMGUs都具有较好的形状记忆性能,4次重复形状记忆循环中PTMGUs的平均固定率与回复率都高于90%,其中PTMGU3(硬段质量分数为35%)的形状记忆性能最佳,平均固定率达到96.9%,平均回复率达到99.5%。  相似文献   

14.
为了改善聚氨酯弹性体拉伸和热稳定性能,本文以环氧树脂改性木质纤维,再填充至聚氨酯(PU)弹性体中制得生物基复合材料,采用万能试验机、扫描电镜和热分析仪分别对复合材料的拉伸性能、断面形貌和热稳定性进行测试分析。结果表明:与未改性填充木质纤维复合材料相比,经水性环氧和E-51环氧树脂改性木质纤维分别填充4wt.%和2wt.%时,复合材料的拉伸强度分别由18.2 MPa提高至22.4和23.7 MPa,断裂伸长率分别由898%提高至1 124%和2 269%。其中,采用2wt.%E-51环氧树脂溶液改性木质纤维填充2wt.%时,与未改性木质纤维相比,其拉伸强度提高了6.3%,断裂伸长率提高4倍以上,这是由于环氧改性木质纤维提高了木质纤维与树脂基体间的界面相容性。失重率为5%时,与未填充PU相比,复合材料的分解温度由269℃升高至279℃,提高了3.7%。填充木质纤维可提高PU拉伸性能与热稳定性。  相似文献   

15.
随着现代工业发展对材料性能的要求不断地提高,聚氨酯也正朝着智能化、功能化等方向发展,其中赋予聚氨酯材料自修复功能是推进其智能化方向的一个重要课题之一。目前自修复聚氨酯材料研究已取得一系列卓有成效的研究成果,其中在聚氨酯材料分子链主链引入热可逆Diels-Alder(DA)共价键以及在传统聚氨酯材料中引入纳米碳材料(如碳纳米管、石墨烯)成为研究热点。然而,目前热可逆DA反应的自修复聚氨酯还存在力学性能稍差、修复效率不高且修复效率随修复次数的增加迅速下降等问题,以及纳米碳材料需经改性才能引入等复杂工艺过程。从光可逆共价键修复体系和热可逆共价键修复体系两个方面简述本征型自修复体系,再从热可逆DA自修复聚氨酯体系和热可逆DA自修复聚氨酯复合材料体系两个方面综述国内外研究进展。  相似文献   

16.
以1,2-二(4′-羟基苯基)邻碳癸硼烷、甲苯二异氰酸酯(TDI)三聚体和端羟基聚丁二烯为原料,采用两步法合成了一种新型的含碳癸硼烷结构的交联聚氨酯弹性体。通过研究催化剂用量、预聚时间、反应物浓度等对交联聚氨酯凝胶率的影响,确定了交联聚氨酯的合成条件,在TDI三聚体质量分数为32%、催化剂用量为0.1%和预聚时间为4h的条件下,可得到具有较高凝胶率的交联产物。利用热分析技术研究了在氩气气氛下,交联聚氨酯从室温至800℃的热性能。研究发现,含5.3%碳癸硼烷聚氨酯第1阶段最快降解速率对应温度比普通聚氨酯提高了53℃,800℃的残余率提高了16.7%。  相似文献   

17.
快速软模浇注成型用聚氨酯树脂   总被引:1,自引:0,他引:1  
利用二苯基甲烷二异氰酸酯(MDI)、液化MDI、聚醚多元醇及小分子扩链剂、交联扩链剂,分别采用半预聚物法及一步法合成了两类适用于硅胶模真空浇注成型的二组分聚氨酯(PU)树脂。分析了树脂黏度及釜中寿命。对PU试样进行了差示扫描量热分析(DSC)、热重分析(TGA)及力学性能分析。结果表明,PU树脂两组分及其混合物的黏度较小,釜内寿命适中,浇注性能优良;玻璃化温度在110℃以上,热重损失为5%时的热失重温度在260℃以上;具有较高的力学性能。  相似文献   

18.
将聚氨酯(PU)与纳米SiO_2复合,采用相转移法制备了不同SiO_2含量的PU/SiO_2复合凝胶聚合物电解质。材料微观结构、热性能和电化学性能等测试结果表明,相转移法得到了多孔结构的聚合物膜,SiO_2颗粒较均匀地分散于PU基体中;随着SiO_2含量逐渐增加,电解质的吸液率和拉伸强度呈先上升后下降的趋势;差示扫描量热分析和热重分析测试结果表明,复合多孔电解质膜的玻璃化转变温度和热分解温度较纯PU有明显提高;SiO_2质量分数为5%时制备的PU/SiO_2复合多孔凝胶聚合物电解质综合性能最优,吸液率为163%,拉伸强度为5.45 MPa,5%分解温度高达324℃,20℃时离子电导率为3.02×10-3S/cm,电化学稳定窗口为5.32 V,显示了较好的应用前景。  相似文献   

19.
将聚氨酯(PU)与纳米SiO_2复合,采用相转移法制备了不同SiO_2含量的PU/SiO_2复合凝胶聚合物电解质。材料微观结构、热性能和电化学性能等测试结果表明,相转移法得到了多孔结构的聚合物膜,SiO_2颗粒较均匀地分散于PU基体中;随着SiO_2含量逐渐增加,电解质的吸液率和拉伸强度呈先上升后下降的趋势;差示扫描量热分析和热重分析测试结果表明,复合多孔电解质膜的玻璃化转变温度和热分解温度较纯PU有明显提高;SiO_2质量分数为5%时制备的PU/SiO_2复合多孔凝胶聚合物电解质综合性能最优,吸液率为163%,拉伸强度为5.45 MPa,5%分解温度高达324℃,20℃时离子电导率为3.02×10-3S/cm,电化学稳定窗口为5.32 V,显示了较好的应用前景。  相似文献   

20.
将氧化石墨烯(GO)通过超声破碎的方法分散在丙二醇甲醚醋酸酯(PMA)中,采用逐步原位聚合的方法将GO参与聚氨酯(PU)的合成反应。将GO片层状态接枝到PU链段当中,制得PU/GO复合材料,并对复合材料的结构进行了表征。实验结果表明:GO与PU进行交联反应并且在基体内分散均匀,在GO添加量为7份条件下,制得的PU/GO复合材料的断裂伸长率达到49.0%,拉伸强度达到28.0MPa,储能模量达到5.08MPa(在130℃条件下),交联密度达到5.05×10~(-4) mol/cm~3,300℃时失重率达到60%,48h吸水率仅为0.3%,具有较好的力学性能、热稳定性能和耐水性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号