首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
β-Nicotinamide mononucleotide (NMN) has recently gained attention for a nutritional supplement because it is an intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD+). In this study, we developed NMN synthesis by coupling two modules. The first module is to culture E. coli MG1655 ▵tktAtktBptsG to metabolize xylose to generate D-ribose in the medium. The supernatant containing D-ribose was applied in the second module which is composed of EcRbsK-EcPRPS-CpNAMPT reaction to synthesize NMN, that requires additional enzymes of CHU0107 and EcPPase to remove feedback inhibitors ADP and pyrophosphate. The second module can be rapidly optimized by comparing NMN production determined by the cyanide assay. Finally, 10 mL optimal biocascade reaction generated NMN with a good yield of 84 % from 1 mM D-ribose supplied from the supernatant of E. coli MG1655 ▵tktAtktBptsG. Our results can further guide researchers to metabolically engineer E. coli for NMN synthesis.  相似文献   

2.
Cardiovascular abnormality-mediated retinal ischemia causes severe visual impairment. Retinal ischemia is involved in enormous pathological processes including oxidative stress, reactive gliosis, and retinal functional deficits. Thus, maintaining retinal function by modulating those pathological processes may prevent or protect against vision loss. Over the decades, nicotinamide mononucleotide (NMN), a crucial nicotinamide adenine dinucleotide (NAD+) intermediate, has been nominated as a promising therapeutic target in retinal diseases. Nonetheless, a protective effect of NMN has not been examined in cardiovascular diseases-induced retinal ischemia. In our study, we aimed to investigate its promising effect of NMN in the ischemic retina of a murine model of carotid artery occlusion. After surgical unilateral common carotid artery occlusion (UCCAO) in adult male C57BL/6 mice, NMN (500 mg/kg/day) was intraperitoneally injected to mice every day until the end of experiments. Electroretinography and biomolecular assays were utilized to measure ocular functional and further molecular alterations in the retina. We found that UCCAO-induced retinal dysfunction was suppressed, pathological gliosis was reduced, retinal NAD+ levels were preserved, and the expression of an antioxidant molecule (nuclear factor erythroid-2-related factor 2; Nrf2) was upregulated by consecutive administration of NMN. Our present outcomes first suggest a promising NMN therapy for the suppression of cardiovascular diseases-mediated retinal ischemic dysfunction.  相似文献   

3.
4.
四川省小麦赤霉病菌对多菌灵的抗药性   总被引:4,自引:0,他引:4  
王丹  叶华智  秦芸 《农药》2007,46(8):560-562
以1.4mg/L多菌灵作为鉴别剂量,在PDA平板上对四川省16个地区的239个小麦赤霉病菌(Fusarium graminearum)进行了抗药性测定,检测得到40个对多菌灵具有抗性的菌株,占总菌株的16.736%。用菌落直径法测定了102个敏感菌株和40个抗药性菌株的EC50值,平均值分别为(0.5870±0.0139)mg/L和(0.6431±0.0362)mg/L,抗药菌株对多菌灵均表现为低抗。  相似文献   

5.
几种杀菌剂对香蕉枯萎病菌的室内毒力测定   总被引:20,自引:6,他引:20  
范鸿雁  谢艺贤  张辉强 《农药》2004,43(3):142-143
香蕉枯萎病是世界香蕉产区的重要病害之一,为了更有效的防治此病,我们选用11种药剂对香蕉枯萎病菌进行室内毒力测定,结果表明:18%保冶达乳油抑菌效果最好,EC50为0.13mg/L;15%三唑酮可湿性粉剂的抑菌效果最差,EC50为201.40mg/L。  相似文献   

6.
Plant immunity is mediated in large part by specific interactions between a host resistance protein and a pathogen effector protein, named effector-triggered immunity (ETI). ETI needs to be tightly controlled both positively and negatively to enable normal plant growth because constitutively activated defense responses are detrimental to the host. In previous work, we reported that mutations in SUPPRESSOR OF rps4-RLD1 (SRFR1), identified in a suppressor screen, reactivated EDS1-dependent ETI to Pseudomonas syringae pv. tomato (Pto) DC3000. Besides, mutations in SRFR1 boosted defense responses to the generalist chewing insect Spodoptera exigua and the sugar beet cyst nematode Heterodera schachtii. Here, we show that mutations in SRFR1 enhance susceptibility to the fungal necrotrophs Fusarium oxysporum f. sp. lycopersici (FOL) and Botrytis cinerea in Arabidopsis. To translate knowledge obtained in AtSRFR1 research to crops, we generated SlSRFR1 alleles in tomato using a CRISPR/Cas9 system. Interestingly, slsrfr1 mutants increased expression of SA-pathway defense genes and enhanced resistance to Pto DC3000. In contrast, slsrfr1 mutants elevated susceptibility to FOL. Together, these data suggest that SRFR1 is functionally conserved in both Arabidopsis and tomato and functions antagonistically as a negative regulator to (hemi-) biotrophic pathogens and a positive regulator to necrotrophic pathogens.  相似文献   

7.
Fungal diseases pose a major threat to ornamental plants, with an increasing percentage of pathogen-driven host losses. In ornamental plants, management of the majority of fungal diseases primarily depends upon chemical control methods that are often non-specific. Host basal resistance, which is deficient in many ornamental plants, plays a key role in combating diseases. Despite their economic importance, conventional and molecular breeding approaches in ornamental plants to facilitate disease resistance are lagging, and this is predominantly due to their complex genomes, limited availability of gene pools, and degree of heterozygosity. Although genetic engineering in ornamental plants offers feasible methods to overcome the intrinsic barriers of classical breeding, achievements have mainly been reported only in regard to the modification of floral attributes in ornamentals. The unavailability of transformation protocols and candidate gene resources for several ornamental crops presents an obstacle for tackling the functional studies on disease resistance. Recently, multiomics technologies, in combination with genome editing tools, have provided shortcuts to examine the molecular and genetic regulatory mechanisms underlying fungal disease resistance, ultimately leading to the subsequent advances in the development of novel cultivars with desired fungal disease-resistant traits, in ornamental crops. Although fungal diseases constitute the majority of ornamental plant diseases, a comprehensive overview of this highly important fungal disease resistance seems to be insufficient in the field of ornamental horticulture. Hence, in this review, we highlight the representative mechanisms of the fungal infection-related resistance to pathogens in plants, with a focus on ornamental crops. Recent progress in molecular breeding, genetic engineering strategies, and RNAi technologies, such as HIGS and SIGS for the enhancement of fungal disease resistance in various important ornamental crops, is also described.  相似文献   

8.
9.
赵杰  刘君丽  司乃国  李志念  陈亮 《农药》2012,51(4):289-291
[目的]为了研究杀菌剂对尖孢镰刀菌、立枯丝核菌、瓜果腐霉菌的生物活性,采用菌丝生长速率法对多种杀菌剂及其混剂组合进行了离体抑菌活性测定.[结果]啶菌(恶)唑和苯醚甲环唑对黄瓜枯萎病菌的EC50值分别为0.3233、0.6604 mg/L;三环菌胺和甲霜灵对黄瓜猝倒病菌的EC50值分别为1.0282、2.5163mg/L.啶菌(恶)唑与苯醚甲环唑、三环菌胺与甲霜灵两两配比组成混剂,不同混剂组合在部分配比中共毒系数大于120,表现出增效作用.[结论]毒力测定结果表明:啶菌(恶)唑、苯醚甲环唑、三环菌胺和甲霜灵分别对3种病菌表现出了很强的抑制作用;啶菌(恶)唑·苯醚甲环唑(1∶5)、三环菌胺·甲霜灵(1∶3和1∶5)分别对病菌表现出了明显的增效作用.  相似文献   

10.
11.
The demonstration that spray-induced gene silencing (SIGS) can confer strong disease resistance, bypassing the laborious and time-consuming transgenic expression of double-stranded (ds)RNA to induce the gene silencing of pathogenic targets, was ground-breaking. However, future field applications will require fundamental mechanistic knowledge of dsRNA uptake, processing, and transfer. There is increasing evidence that extracellular vesicles (EVs) mediate the transfer of transgene-derived small interfering (si)RNAs in host-induced gene silencing (HIGS) applications. In this study, we establish a protocol for barley EV isolation and assess the possibilities for EVs regarding the translocation of sprayed dsRNA from barley (Hordeum vulgare) to its interacting fungal pathogens. We found barley EVs that were 156 nm in size, containing predominantly 21 and 19 nucleotide (nts) siRNAs, starting with a 5′-terminal Adenine. Although a direct comparison of the RNA cargo between HIGS and SIGS EV isolates is improper given their underlying mechanistic differences, we identified sequence-identical siRNAs in both systems. Overall, the number of siRNAs isolated from the EVs of dsRNA-sprayed barley plants with sequence complementarity to the sprayed dsRNA precursor was low. However, whether these few siRNAs are sufficient to induce the SIGS of pathogenic target genes requires further research. Taken together, our results raise the possibility that EVs may not be mandatory for the spray-delivered siRNA uptake and induction of SIGS.  相似文献   

12.
13.
Fusarium wilt of watermelon, caused by Fusarium oxysporum f. sp. niveum (FON), is pathogenic only to watermelon and has become one of the main limiting factors in watermelon production internationally. Detection methods for this pathogen are limited, with few published molecular assays available to differentiate FON from other formae speciales of F. oxysporum. FON has four known races that vary in virulence but are difficult and costly to differentiate using traditional inoculation methods and only race 2 can be differentiated molecularly. In this study, genomic and chromosomal comparisons facilitated the development of a conventional polymerase chain reaction (PCR) assay that could differentiate race 3 from races 1 and 2, and by using two other published PCR markers in unison with the new marker, the three races could be differentiated. The new PCR marker, FNR3-F/FNR3-R, amplified a 511 bp region on the “pathogenicity chromosome” of the FON genome that is absent in race 3. FNR3-F/FNR3-R detected genomic DNA down to 2.0 pg/µL. This marker, along with two previously published FON markers, was successfully applied to test over 160 pathogenic FON isolates from Florida, Georgia, and South Carolina. Together, these three FON primer sets worked well for differentiating races 1, 2, and 3 of FON. For each marker, a greater proportion (60 to 90%) of molecular results agreed with the traditional bioassay method of race differentiation compared to those that did not. The new PCR marker should be useful to differentiate FON races and improve Fusarium wilt research.  相似文献   

14.
15.
Powdery mildew (PM) is an economically important foliar disease of cultivated cereals worldwide. The cultivation of disease-resistant varieties is considered the most efficient, sustainable and economical strategy for disease management. The objectives of the current study were to fine map the chromosomal region harboring the wild emmer PM resistance locus Pm36 and to identify candidate genes by exploiting the improved tetraploid wheat genomic resources. A set of backcross inbred lines (BILs) of durum wheat were genotyped with the SNP 25K chip array and comparison of the PM-resistant and susceptible lines defined a 1.5 cM region (physical interval of 1.08 Mb) harboring Pm36. The genetic map constructed with F2:3 progenies derived by crossing the PM resistant line 5BIL-42 and the durum parent Latino, restricted to 0.3 cM the genetic distance between Pm36 and the SNP marker IWB22904 (physical distance 0.515 Mb). The distribution of the marker interval including Pm36 in a tetraploid wheat collection indicated that the positive allele was largely present in the domesticated and wild emmer Triticum turgidum spp. dicoccum and ssp. dicoccoides. Ten high-confidence protein coding genes were identified in the Pm36 region of the emmer, durum and bread wheat reference genomes, while three added genes showed no homologous in the emmer genome. The tightly linked markers can be used for marker-assisted selection in wheat breeding programs, and as starting point for the Pm36 map-based cloning.  相似文献   

16.
Glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme of the pentose phosphate pathway (PPP), plays a pivotal role in plant stress responses. However, the function and mechanism of G6PDHs in crop plants challenged by fungal pathogens remain poorly understood. In this study, a wheat G6DPH gene responding to infection by Puccinia striiformis f. sp. tritici (Pst), designated TaG6PDH2, was cloned and functionally identified. TaG6PDH2 expression was significantly upregulated in wheat leaves inoculated with Pst or treated with abiotic stress factors. Heterologous mutant complementation and enzymatic properties indicate that TaG6PDH2 encodes a G6PDH protein. The transient expression of TaG6PDH2 in Nicotiana benthamiana leaves and wheat protoplasts revealed that TaG6PDH2 is a chloroplast-targeting protein. Silencing TaG6PDH2 via the barley stripe mosaic virus (BSMV)-induced gene silencing (VIGS) system led to compromised wheat resistance to the Pst avirulent pathotype CYR23, which is implicated in weakened H2O2 accumulation and cell death. In addition, TaG6PDH2 was confirmed to interact with the wheat glutaredoxin TaGrxS4. These results demonstrate that TaG6PDH2 endows wheat with increased resistance to stripe rust by regulating reactive oxygen species (ROS) production.  相似文献   

17.
Fusarium wilt (Panama disease) caused by Fusarium oxysporum f. sp. cubense (FOC) represents a significant threat to banana (Musa spp.) production. Musa AAB is susceptible to Race 1 (FOC1) and Race 4 (FOC4), while Cavendish Musa AAA is found to be resistant to FOC1 but still susceptible to Race 4. A polygalacturonase (PGC3) was purified from the supernatant of Fusarium oxysporum f. sp. cubense race 4 (FOC4), which is the pathogen of Fusarium wilt. PGC3 had an apparent molecular weight of 45 kDa according to SDS-PAGE. The enzyme hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by analysis of degradation products. The Km and Vmax values of PGC3 from FOC4 were determined to be 0.70 mg·mL−1 and 101.01 Units·mg·protein−1·min−1, respectively. Two pgc3 genes encoding PGC3 from FOC4 and FOC1, both genes of 1368 bp in length encode 456 amino-acid residues with a predicted signal peptide sequence of 21 amino acids. There are 16 nucleotide sites difference between FOC4-pgc3 and FOC1-pgc3, only leading to four amino acid residues difference. In order to obtain adequate amounts of protein required for functional studies, two genes were cloned into the expression vector pPICZaA and then expressed in Pichia pastoris strains of SMD1168. The recombinant PGC3, r-FOC1-PGC3 and r-FOC4-PGC3, were expressed and purified as active proteins. The optimal PGC3 activity was observed at 50 °C and pH 4.5. Both recombinant PGC3 retained >40% activity at pH 3–7 and >50% activity in 10–50 °C. Both recombinant PGC3 proteins could induce a response but with different levels of tissue maceration and necrosis in banana plants. In sum, our results indicate that PGC3 is an exo-PG and can be produced with full function in P. pastoris.  相似文献   

18.
19.
Gibberella stalk rot (GSR) by Fusarium graminearum causes significant losses of maize production worldwide. Jasmonates (JAs) have been broadly known in regulating defense against pathogens through the homeostasis of active JAs and COI-JAZ-MYC function module. However, the functions of different molecular species of JAs and COI-JAZ-MYC module in maize interactions with Fusarium graminearum and regulation of diverse metabolites remain unknown. In this study, we found that exogenous application of MeJA strongly enhanced resistance to GSR. RNA-seq analysis showed that MeJA activated multiple genes in JA pathways, which prompted us to perform a genome-wide screening of key JA signaling components in maize. Yeast Two-Hybrid, Split-Luciferase, and Pull-down assays revealed that the JA functional and structural mimic coronatine (COR) functions as an essential ligand to trigger the interaction between ZmCOIa and ZmJAZ15. By deploying CRISPR-cas9 knockout and Mutator insertional mutants, we demonstrated that coi1a mutant is more resistant, whereas jaz15 mutant is more susceptible to GSR. Moreover, JA-deficient opr7-5opr8-2 mutant displayed enhanced resistance to GSR compared to wild type. Together, these results provide strong evidence that ZmJAZ15 plays a pivotal role, whereas ZmCOIa and endogenous JA itself might function as susceptibility factors, in maize immunity to GSR.  相似文献   

20.
Stem rust (SR) and leaf rust (LR) are currently the two most important rust diseases of cultivated rye in Central Europe and resistant cultivars promise to prevent yield losses caused by those pathogens. To secure long-lasting resistance, ideally pyramided monogenic resistances and race-nonspecific resistances are applied. To find respective genes, we screened six breeding populations and one testcross population for resistance to artificially inoculated SR and naturally occurring LR in multi-environmental field trials. Five populations were genotyped with a 10K SNP marker chip and one with DArTseqTM. In total, ten SR-QTLs were found that caused a reduction of 5–17 percentage points in stem coverage with urediniospores. Four QTLs thereof were mapped to positions of already known SR QTLs. An additional gene at the distal end of chromosome 2R, Pgs3.1, that caused a reduction of 40 percentage points SR infection, was validated. One SR-QTL on chromosome 3R, QTL-SR4, was found in three populations linked with the same marker. Further QTLs at similar positions, but from different populations, were also found on chromosomes 1R, 4R, and 6R. For SR, additionally seedling tests were used to separate between adult-plant and all-stage resistances and a statistical method accounting for the ordinal-scaled seedling test data was used to map seedling resistances. However, only Pgs3.1 could be detected based on seedling test data, even though genetic variance was observed in another population, too. For LR, in three of the populations, two new large-effect loci (Pr7 and Pr8) on chromosomes 1R and 2R were mapped that caused 34 and 21 percentage points reduction in leaf area covered with urediniospores and one new QTL on chromosome 1R causing 9 percentage points reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号