共查询到20条相似文献,搜索用时 0 毫秒
1.
Dongkyu Jeon Ikhyun Jun Ho K. Lee Jinhong Park Bo-Rahm Kim Kunhi Ryu Hongchul Yoon Tae-im Kim Wan Namkung 《International journal of molecular sciences》2022,23(9)
Cystic fibrosis transmembrane conductance regulator (CFTR) is highly expressed on the ocular epithelium and plays a pivotal role in the fluid secretion driven by chloride transport. Dry eye disease is one of the most common diseases with limited therapeutic options. In this study, a high-throughput screening was performed to identify novel CFTR activators capable of inducing chloride secretion on the ocular surface. The screening of 50,000 small molecules revealed three novel CFTR activators. Among them, the most potent CFTR activator, Cact-3 (7-(3,4-dimethoxyphenyl)-N-(4-ethoxyphenyl)pyrazolo [1,5-α]pyrimidine-2-carboxamide), produced large and sustained Cl− currents in WT-CFTR-expressing FRT cells with no alterations of ANO1 and hERG channel activity. The application of Cact-3 strongly activated CFTR in the ocular epithelia of mice and it also significantly increased CFTR-mediated Cl− transport in a primary cultured human conjunctival epithelium. Cact-3 strongly stimulated tear secretion in normal mice. In addition, Cact-3 significantly reduced ocular surface damage and the expression of proinflammatory factors, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in an experimental mouse model of dry eye disease. These results suggest that Cact-3, a novel CFTR activator, may be a potential development candidate for the treatment of dry eye disease. 相似文献
2.
Aniello Meoli Olaf Eickmeier Giovanna Pisi Valentina Fainardi Stefan Zielen Susanna Esposito 《International journal of molecular sciences》2022,23(20)
Cystic fibrosis (CF), the most common genetically inherited disease in Caucasian populations, is a multi-systemic life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In 2012, the arrival of CFTR modulators (potentiators, correctors, amplifiers, stabilizers, and read-through agents) revolutionized the therapeutic approach to CF. In this review, we examined the physiopathological mechanism of chronic dysregulated innate immune response in the lungs of CF patients with pulmonary involvement with particular reference to phagocytes, critically analyzing the role of CFTR modulators in influencing and eventually restoring their function. Our literature review highlighted that the role of CFTR in the lungs is crucial not only for the epithelial function but also for host defense, with particular reference to phagocytes. In macrophages and neutrophils, the CFTR dysfunction compromises both the intricate process of phagocytosis and the mechanisms of initiation and control of inflammation which then reverberates on the epithelial environment already burdened by the chronic colonization of pathogens leading to irreversible tissue damage. In this context, investigating the impact of CFTR modulators on phagocytic functions is therefore crucial not only for explaining the underlying mechanisms of pleiotropic effects of these molecules but also to better understand the physiopathological basis of this disease, still partly unexplored, and to develop new complementary or alternative therapeutic approaches. 相似文献
3.
Intracellular protein traffic plays an important role in the regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channels. Microtubule and actin-based motor proteins direct CFTR movement along trafficking pathways. As shown for other regulatory proteins such as adaptors, the involvement of protein motors in CFTR traffic is cell-type specific. Understanding motor specificity provides insight into the biology of the channel and opens opportunity for discovery of organ-specific drug targets for treating CFTR-mediated diseases. 相似文献
4.
Elena Kondratyeva Anna Efremova Yuliya Melyanovskaya Anna Voronkova Alexander Polyakov Nataliya Bulatenko Tagui Adyan Viktoriya Sherman Valeriia Kovalskaia Nika Petrova Marina Starinova Tatiana Bukharova Sergei Kutsev Dmitry Goldshtein 《International journal of molecular sciences》2022,23(18)
In the cohort of Russian patients with cystic fibrosis, the p.[Leu467Phe;Phe508del] complex allele (legacy name [L467F;F508del]) of the CFTR gene is understudied. In this research, we present the results of frequency evaluation of the [L467F;F508del] complex allele in the Russian Federation among patients with a F508del/F508del genotype, its effect on the clinical course of cystic fibrosis, the intestinal epithelium ionic channel function, and the effectiveness of target therapy. The frequency of the [L467F;F508del] complex allele among patients with homozygous F508del was determined with multiplex ligase-dependent probe amplification followed by polymerase chain reaction and fragment analysis. The function of ionic channels, including the residual CFTR function, and the effectiveness of CFTR modulators was analyzed using intestinal current measurements on rectal biopsy samples and the forskolin-induced swelling assay on organoids. The results showed that the F508del/[L467F;F508del] genotype is present in 8.2% of all Russian patients with F508del in a homozygous state. The clinical course of the disease in patients with the F508del/[L467F;F508del] genotype is severe and does not vary from the course in the cohort with homozygous F508del, although the CFTR channel function is significantly lower. For patients with the F508del/[L467F;F508del] genotype, we can recommend targeted therapy using a combined ivacaftor + tezacaftor + elexacaftor medication. 相似文献
5.
Nesrine Baatallah Ahmad Elbahnsi Benoit Chevalier Solne Castanier Jean-Paul Mornon Iwona Pranke Aleksander Edelman Isabelle Sermet-Gaudelus Isabelle Callebaut Alexandre Hinzpeter 《International journal of molecular sciences》2022,23(24)
ABC transporters are large membrane proteins sharing a complex architecture, which comprises two nucleotide-binding domains (NBDs) and two membrane-spanning domains (MSDs). These domains are susceptible to mutations affecting their folding and assembly. In the CFTR (ABCC7) protein, a groove has been highlighted in the MSD1 at the level of the membrane inner leaflet, containing both multiple mutations affecting folding and a binding site for pharmaco-chaperones that stabilize this region. This groove is also present in ABCB proteins, however it is covered by a short elbow helix, while in ABCC proteins it remains unprotected, due to a lower position of the elbow helix in the presence of the ABCC-specific lasso motif. Here, we identified a MSD1 second-site mutation located in the vicinity of the CFTR MSD1 groove that partially rescued the folding defect of cystic fibrosis causing mutations located within MSD1, while having no effect on the most frequent mutation, F508del, located within NBD1. A model of the mutated protein 3D structure suggests additional interaction between MSD1 and MSD2, strengthening the assembly at the level of the MSD intracellular loops. Altogether, these results provide insightful information in understanding key features of the folding and function of the CFTR protein in particular, and more generally, of type IV ABC transporters. 相似文献
6.
7.
8.
9.
10.
11.
12.
13.
Sang-Hoon Yoon Mi-Rae Bae Hyeonwoo La Hyuk Song Kwonho Hong Jeong-Tae Do 《International journal of molecular sciences》2021,22(15)
Mouse embryonic stem cells (ESCs) are useful tools for studying early embryonic development and tissue formation in mammals. Since neural lineage differentiation is a major subject of organogenesis, the development of efficient techniques to induce neural stem cells (NSCs) from pluripotent stem cells must be preceded. However, the currently available NSC differentiation methods are complicated and time consuming. This study aimed to propose an efficient method for the derivation of NSCs from mouse ESCs; early neural lineage commitment was achieved using a three-dimensional (3D) culture system, followed by a two-dimensional (2D) NSC derivation. To select early neural lineage cell types during differentiation, Sox1-GFP transgenic ESCs were used. They were differentiated into early neural lineage, forming spherical aggregates, which were subsequently picked for the establishment of 2D NSCs. The latter showed a morphology similar to that of brain-derived NSCs and expressed NSC markers, Musashi, Nestin, N-cadherin, and Sox2. Moreover, the NSCs could differentiate into three subtypes of neural lineages, neurons, astrocytes, and oligodendrocytes. The results together suggested that ESCs could efficiently differentiate into tripotent NSCs through specification in 3D culture (for approximately 10 days) followed by 2D culture (for seven days). 相似文献
14.
Christelle El Hajj Assaf Chrystian Zetina-Serrano Nadia Tahtah Andr El Khoury Ali Atoui Isabelle P. Oswald Olivier Puel Sophie Lorber 《International journal of molecular sciences》2020,21(24)
Penicillium, one of the most common fungi occurring in a diverse range of habitats, has a worldwide distribution and a large economic impact on human health. Hundreds of the species belonging to this genus cause disastrous decay in food crops and are able to produce a varied range of secondary metabolites, from which we can distinguish harmful mycotoxins. Some Penicillium species are considered to be important producers of patulin and ochratoxin A, two well-known mycotoxins. The production of these mycotoxins and other secondary metabolites is controlled and regulated by different mechanisms. The aim of this review is to highlight the different levels of regulation of secondary metabolites in the Penicillium genus. 相似文献
15.
16.
17.
18.
19.
Jaakko Saari Fatima Siddique Sanna Korpela Elina Mntyl Teemu O. Ihalainen Katri Kaukinen Katriina Aalto-Setl Katri Lindfors Kati Juuti-Uusitalo 《International journal of molecular sciences》2022,23(3)
The small intestinal epithelium has an important role in nutrition, but also in drug absorption and metabolism. There are a few two-dimensional (2D) patient-derived induced pluripotent stem cell (iPSC)-based intestinal models enabling easy evaluation of transcellular transport. It is known that animal-derived components induce variation in the experimental outcomes. Therefore, we aimed to refine the differentiation protocol by using animal-free components. More specifically, we compared maturation of 2D-cultured iPCSs toward small intestinal epithelial cells when cultured either with or without serum, and either on Geltrex or on animal-free, recombinant laminin-based substrata. Differentiation status was characterized by qPCR, immunofluorescence imaging, and functionality assays. Our data suggest that differentiation toward definitive endoderm is more efficient without serum. Both collagen- and recombinant laminin-based coating supported differentiation of definitive endoderm, posterior definitive endoderm, and small intestinal epithelial cells from iPS-cells equally well. Small intestinal epithelial cells differentiated on recombinant laminin exhibited slightly more enterocyte specific cellular functionality than cells differentiated on Geltrex. Our data suggest that functional small intestinal epithelial cells can be generated from iPSCs in serum-free method on xeno-free substrata. This method is easily converted to an entirely xeno-free method. 相似文献