首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of psychological stress on eosinophilic gastrointestinal disorders have not been elucidated. This study investigated the effects of psychological stress in a mouse model of eosinophilic enteritis (EoN). BALB/c mice were treated with ovalbumin (OVA) to create an EoN model and subjected to either water avoidance stress (WAS) or sham stress (SS). Microscopic inflammation, eosinophil and mast cell counts, mRNA expression, and protein levels of type 2 helper T cell (Th2) cytokines in the ileum were compared between groups. We evaluated ex vivo intestinal permeability using an Ussing chamber. A corticotropin-releasing hormone type 1 receptor (CRH-R1) antagonist was administered before WAS, and its effects were analyzed. WAS significantly increased diarrhea occurrence and, eosinophil and mast cell counts, and decreased the villus/crypt ratio compared to those in the SS group. The mRNA expression of CRH, interleukin IL-4, IL-5, IL-13, eotaxin-1, and mast cell tryptase β2 significantly increased, and the protein levels of IL-5, IL-13, and OVA-specific immunoglobulin E (IgE) also significantly increased in the WAS group. Moreover, WAS significantly increased the intestinal permeability. The CRH-R1 antagonist significantly inhibited all changes induced by WAS. Psychological stress exacerbated ileal inflammation via the CRH-mast cell axis in an EoN mouse model.  相似文献   

2.
Oxidative stress is considered as a major risk factor that contributes to increased lipid peroxidation and declined antioxidants in some degenerative diseases. Glycyrrhizin is widely used to cure allergic diseases due to its medicinal properties. In the present study, we evaluated the role of glycyrrhizin on lipid peroxidation and antioxidant status in the blood and nasal mucosa of allergic rhinitis (AR) mice. Mice were divided into six groups: normal control mice, model control (MC) mice, three glycyrrhizin-treated mice groups and lycopene-treated mice. Sensitization-associated increase in lipid peroxidation was observed in the blood and nasal mucosa of MC mice. Activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), total antioxidant capacity (TAOC) and levels of glutathione (GSH) were found to be significantly decreased in the blood and nasal mucosa in MC mice when compared to normal control mice. However, normalized lipid peroxidation and antioxidant defenses were reported in the glycyrrhizin-treated and lycopene-treated mice. Moreover, glycyrrhizin treatment still enhanced IFN-γ and reduced IL-4 levels in glycyrrhizin-treated mice. These findings demonstrated that glycyrrhizin treatment enhanced the antioxidant status and decreased the incidence of free radical-induced lipid peroxidation and improved immunity activities in the blood and nasal mucosa of AR mice.  相似文献   

3.
The Shenmen point (acupuncture point heart 7: HT7), located in the heart meridian, is frequently used to treat mental disorders, including drug addiction, anxiety, and depression. This study aimed to determine how HT7 regulates anxiety and negative emotions caused by repeated alcohol administration, focusing on the amygdala and paraventricular nucleus (PVN). Repeated administration of alcohol (ETOH; 2 g/kg, i.p. injection, 16% v/v) for 14 days increased the corticosterone (CORT) levels, and HT7 stimulation reduced the plasma CORT levels. HT7 stimulation mitigated anxiety-like behaviors and reduced 22-kHz ultrasonic vocalizations in rats receiving repeated ETOH injections. HT7 stimulation increased the amygdala expression of mature brain-derived neurotropic factor (mBDNF) and phosphorylated tropomyosin receptor kinase B (pTrkB) and decreased the PVN corticotropin-releasing hormone (CRH) expression. Amygdala microinjections of the TrkB antagonist ANA-12 (0.1 pmol/1 μL) reversed the increase in PVN CRH levels. The reduced PVN CRH levels were regulated by CRH-expressing neurons in the amygdala, and the increased amygdala CRH levels were affected by the HT7-stimulation induced increases in mBDNF. HT7 stimulation alleviates increased stress hormone levels and mitigates anxiety and negative emotions caused by repeated ETOH administration. These results provide scientific support for the clinical use of acupuncture to treat various alcoholism-induced diseases.  相似文献   

4.
5.
The airway epithelium of the human nasal mucosa acts as a physical barrier that protects against inhaled substances and pathogens via bicellular and tricellular tight junctions (bTJs and tTJs) including claudins, angulin-1/LSR and tricellulin. High mobility group box-1 (HMGB1) increased by TGF-β1 is involved in the induction of nasal inflammation and injury in patients with allergic rhinitis, chronic rhinosinusitis, and eosinophilic chronic rhinosinusitis. However, the detailed mechanisms by which this occurs remain unknown. In the present study, to investigate how HMGB1 affects the barrier of normal human nasal epithelial cells, 2D and 2.5D Matrigel culture of primary cultured human nasal epithelial cells were pretreated with TGF-β type I receptor kinase inhibitor EW-7197 before treatment with HMGB1. Knockdown of angulin-1/LSR downregulated the epithelial barrier. Treatment with EW-7197 decreased angulin-1/LSR and concentrated the expression at tTJs from bTJs and increased the epithelial barrier. Treatment with a binder to angulin-1/LSR angubindin-1 decreased angulin-1/LSR and the epithelial barrier. Treatment with HMGB1 decreased angulin-1/LSR and the epithelial barrier. In 2.5D Matrigel culture, treatment with HMGB1 induced permeability of FITC-dextran (FD-4) into the lumen. Pretreatment with EW-7197 prevented the effects of HMGB1. HMGB1 disrupted the angulin-1/LSR-dependent epithelial permeability barriers of HNECs via TGF-β signaling in HNECs.  相似文献   

6.
Considered relevant during allergy responses, numerous observations have also identified mast cells (MCs) as critical effectors during the progression and modulation of several neuroinflammatory conditions, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). MC granules contain a plethora of constituents, including growth factors, cytokines, chemokines, and mitogen factors. The release of these bioactive substances from MCs occurs through distinct pathways that are initiated by the activation of specific plasma membrane receptors/channels. Here, we focus on hemichannels (HCs) formed by connexins (Cxs) and pannexins (Panxs) proteins, and we described their contribution to MC degranulation in AD, ALS, and harmful stress conditions. Cx/Panx HCs are also expressed by astrocytes and are likely involved in the release of critical toxic amounts of soluble factors—such as glutamate, adenosine triphosphate (ATP), complement component 3 derivate C3a, tumor necrosis factor (TNFα), apoliprotein E (ApoE), and certain miRNAs—known to play a role in the pathogenesis of AD, ALS, and other neurodegenerative disorders. We propose that blocking HCs on MCs and glial cells offers a promising novel strategy for ameliorating the progression of neurodegenerative diseases by reducing the release of cytokines and other pro-inflammatory compounds.  相似文献   

7.
The emergence of highly effective CFTR modulator therapy has led to significant improvements in health care for most patients with cystic fibrosis (CF). For some, however, these therapies remain inaccessible due to the rarity of their individual CFTR variants, or due to a lack of biologic activity of the available therapies for certain variants. One proposed method of addressing this gap is the use of primary human cell-based models, which allow preclinical therapeutic testing and physiologic assessment of relevant tissue at the individual level. Nasal cells represent one such tissue source and have emerged as a powerful model for individual disease study. The ex vivo culture of nasal cells has evolved over time, and modern nasal cell models are beginning to be utilized to predict patient outcomes. This review will discuss both historical and current state-of-the art use of nasal cells for study in CF, with a particular focus on the use of such models to inform personalized patient care.  相似文献   

8.
The nasal epithelium is a key portal for infection by respiratory viruses such as SARS-CoV-2 and represents an important target for prophylactic and therapeutic interventions. In the present study, we test the safety and efficacy of a newly developed nasal spray (AM-301, marketed as Bentrio) against infection by SARS-CoV-2 and its Delta variant on an in vitro 3D-model of the primary human nasal airway epithelium. Safety was assessed in assays for tight junction integrity, cytotoxicity and cilia beating frequency. Efficacy against SARS-CoV-2 infection was evaluated in pre-viral load and post-viral load application on airway epithelium. No toxic effects of AM-301 on the nasal epithelium were found. Prophylactic treatment with AM-301 significantly reduced viral titer vs. controls over 4 days, reaching a maximum reduction of 99% in case of infection from the wild-type SARS-CoV-2 variant and more than 83% in case of the Delta variant. When AM-301 administration was started 24 h after infection, viral titer was reduced by about 12-folds and 3-folds on Day 4. The results suggest that AM-301 is safe and significantly decelerates SARS-CoV-2 replication in cell culture inhibition assays of prophylaxis (pre-viral load application) and mitigation (post-viral load application). Its physical (non-pharmaceutical) mechanism of action, safety and efficacy warrant additional investigations both in vitro and in vivo for safety and efficacy against a broad spectrum of airborne viruses and allergens.  相似文献   

9.
Chronic rhinosinusitis of the nasal mucosa is an inflammatory disease of paranasal sinuses, which causes rhinorrhea, nasal congestion, and hyposmia, and in some cases, it can result in the development of nasal polyposis. Nasal polyps are benign lobular-shaped growths that project in the nasal cavities; they originate from inflammation in the paranasal mucous membrane and are associated with a high expression of interleukins (IL)-4, IL-5, IL-13, and IgE. Polyps derive from the epithelial–mesenchymal transition of the nasal epithelium resulting in a nasal tissue remodeling. Nasal polyps from three patients with chronic rhinosinusitis as well as control non-polyp nasal mucosa were used to isolate and cultivate mesenchymal stem cells characterized as CD73+, CD90+, CD105+/CD14, CD34, and CD45. Mesenchymal stem cells (MSCs) cultures were induced to differentiate toward adipocytes, where lipid droplets and adipocyte genes PPARγ2, ADIPO-Q, and FABP4 were observed in control non-polyp nasal mucosa-derived mesenchymal cells but were scarcely present in the cultures derived from the nasal polyps, where apoptosis was evident. The modulation of the response to adipogenic stimulus in polyps represents a change in the molecular response that controls the cascade required for differentiation as well as possible means to specifically target these cells, sparing the normal mucosa of the nasal sinuses.  相似文献   

10.
A sizable part (~2%) of the human genome encodes for proteases. They are involved in many physiological processes, such as development, reproduction and inflammation, but also play a role in pathology. Mast cells (MC) contain a variety of MC specific proteases, the expression of which may differ between various MC subtypes. Amongst these proteases, chymase represents up to 25% of the total proteins in the MC and is released from cytoplasmic granules upon activation. Once secreted, it cleaves the targets in the local tissue environment, but may also act in lymph nodes infiltrated by MC, or systemically, when reaching the circulation during an inflammatory response. MC have been recognized as important components in the development of kidney disease. Based on this observation, MC chymase has gained interest following the discovery that it contributes to the angiotensin-converting enzyme’s independent generation of angiotensin II, an important inflammatory mediator in the development of kidney disease. Hence, progress regarding its role has been made based on studies using inhibitors but also on mice deficient in MC protease 4 (mMCP-4), the functional murine counterpart of human chymase. In this review, we discuss the role and actions of chymase in kidney disease. While initially believed to contribute to pathogenesis, the accumulated data favor a more subtle view, indicating that chymase may also have beneficial actions.  相似文献   

11.
Endotherms are easily challenged by chronic cold stress. In this study, the development and injury of the small intestine in the Min pig model and Yorkshire pig model under chronic cold stress, and the molecular mechanisms by which glucose supplementation reduces small intestinal mucosal damage were investigated. The results showed that morphological structure lesions of the jejunal mucosa and ileal mucosa were visible in Yorkshire pigs under chronic cold stress. Meanwhile, the Occludin mRNA and protein expression in jejunal mucosa of Yorkshire pigs was decreased. Chronic cold stress enhanced the expression of Toll-like receptor 4 (TLR4), the myeloid differentiation main response 88 (MyD88), nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3), cleaved caspase-1, mature-IL-1β, and high-mobility group box 1 (HMGB 1) mRNA and protein expression in jejunal mucosa of Yorkshire pigs, whereas the mRNA and protein of Bax was triggered in ileal mucosa. In Min pigs, no such deleterious consequences were observed. Dietary glucose supplementation ameliorates small intestinal mucosal injury, declined TLR4 and MyD88 expression in jejunal mucosa. In conclusion, chronic cold stress induced the small intestinal mucosa damage in Yorkshire pigs, whereas glucose supplementation mitigated the deleterious effects of chronic cold stress on the small intestine.  相似文献   

12.

A 3D computational model was developed to study the flow and the transport and deposition of nano-size particle in a realistic human nasal passage. The nasal cavity was constructed from a series of MRI images of coronal sections of a nose of a live human subject. For several breathing rates associated with low or moderate activities, the steady state flows in the nasal passage were simulated numerically. The airflow simulation results were compared with the available experimental data for the nasal passage. Despite the anatomical differences of the human subjects used in the experiments and computer model, the simulation results were in qualitative agreement with the experimental data.

Deposition and transport of ultrafine particles (1 to 100 nm) in the nasal cavity for different breathing rates were also simulated using an Eulerian-Lagrangian approach. The simulation results for the nasal capture efficiency were found to be in reasonable agreement with the available experimental data for a number of human subjects given typical anatomical differences. The computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate especially for the particles smaller than 20 nm. Based on the simulated results, a semi-empirical equation for the capture efficiency of the nasal passage for nano-size particles was fitted in terms of Peclet number.  相似文献   

13.
Background: Asian sand dust (ASD) and Aspergillus fumigatus are known risk factors for airway mucosal inflammatory diseases. Bacterial and fungal biofilms commonly coexist in chronic rhinosinusitis and fungus balls. We evaluated the effects of ASD on the development of A. fumigatus biofilm formation on nasal epithelial cells. Methods: Primary nasal epithelial cells were cultured with A. fumigatus conidia with or without ASD for 72 h. The production of interleukin (IL)-6, IL-8, and transforming growth factor (TGF)-β1 from nasal epithelial cells was determined by the enzyme-linked immunosorbent assay. The effects of ASD on A. fumigatus biofilm formation were determined using crystal violet, concanavalin A, safranin staining, and confocal scanning laser microscopy. Results: ASD and A. fumigatus significantly enhanced the production of IL-6 and IL-8 from nasal epithelial cells. By coculturing A. fumigatus with ASD, the dry weight and safranin staining of the fungal biofilms significantly increased in a time-dependent manner. However, the increased level of crystal violet and concanavalin A stain decreased after 72 h of incubation. Conclusions: ASD and A. fumigatus induced the production of inflammatory chemical mediators from nasal epithelial cells. The exposure of A. fumigatus to ASD enhanced the formation of biofilms. The coexistence of ASD and A. fumigatus may increase the development of fungal biofilms and fungal inflammatory diseases in the sinonasal mucosa.  相似文献   

14.
Yu Shao  Lani Pardini  Ronald S. Pardini 《Lipids》1995,30(11):1035-1045
In the present study, we investigated the effects of high levels of dietary fish oil on the growth of MX-1 human mammary carcinoma and its response to mitomycin C (MC) treatment in athymic mice. We found that high levels of dietary fish oil (20% menhaden oil+5% corn oil, w/w) compared to a control diet (5% corn oil, w/w) not only lowered the tumor growth rate, but also increased the tumor response to MC treatment. We also found that high levels of dietary fish oil significantly increased the activities of tumor xanthine oxidase and DT-diaphorase, which are proposed to be involved in the bioreductive activation of MC. Since menhaden oil is highly unsaturated, its intake caused a significant increase in the degree of fatty acid unsaturation in tumor membrane phospholipids. This alteration in tumor membrane phospholipids made the tumor more susceptible to oxidative stress, as indicated by the increased levels of both endogenous lipid peroxidation and protein oxidation after feeding the host animals the menhaden oil diet. In addition, the tumor antioxidant enzyme activities, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPOx), and glutathione S-transferase peroxidase (GSTPx), were all significantly enhanced by feeding a diet high in fish oil. MC treatment caused further increases in tumor lipid peroxidation and protein oxidation, as well as in the activities of CAT, SOD, GPOx, and GSTPx, suggesting that MC causes oxidative stress in this tumor model which is exacerbated by feeding a diet high in menhaden oil. Thus, feeding a diet rich in menhaden oil decreased the growth of human mammary carcinoma MX-1, increased its responsiveness to MC, and increased its susceptibility to endogenous and MC-induced oxidative stress, and increased the tumor activities of two enzymes proposed to be involved in the bioactivation of MC, that is, DT-diaphorase and xanthine oxidase. These findings support a role of these two enzymes in the bioactivating of MC and indicate that the type of dietary fat may be important in tumor response to therapy.  相似文献   

15.
Atopic dermatitis (AD) represents a severe global burden on physical, physiological and mental health. Innate immune cell basophils are essential for provoking allergic inflammation in AD. However, the roles of novel immunoregulatory cytokine IL-37 in basophils remain elusive. We employed in vitro co-culture of human basophils and human keratinocyte HaCaT cells and an in vivo MC903-induced AD murine model to investigate the anti-inflammatory mechanism of IL-37. In the in vitro model, IL-37b significantly decreased Der p1-induced thymic stromal lymphopoietin (TSLP) overexpression in HaCaT cells and decreased the expression of TSLP receptor as well as basophil activation marker CD203c on basophils. IL-37 could also reduce Th2 cytokine IL-4 release from TSLP-primed basophils ex vivo. In the in vivo model, alternative depletion of basophils ameliorated AD symptoms and significantly lowered the Th2 cell and eosinophil populations in the ear and spleen of the mice. Blocking TSLP alleviated the AD-like symptoms and reduced the infiltration of basophils in the spleen. In CRISPR/Cas9 human IL-37b knock-in mice or mice with direct treatment by human IL-37b antibody, AD symptoms including ear swelling and itching were significantly alleviated upon MC903 challenge. Notably, IL-37b presence significantly reduced the basophil infiltration in ear lesions. In summary, IL-37b could regulate the TSLP-mediated activation of basophils and reduce the release of IL-4. The results, therefore, suggest that IL-37 may target TSLP-primed basophils to alleviate AD.  相似文献   

16.

Inhalation is the main route for aerosol entering the human body. Many occupational lung diseases are associated with exposure to fiber aerosol in the workplace. However, very few studies to date have been conducted for investigating fiber deposition in the human airway. As a result, there is a notable lack of information on the nature of the fiber deposition pattern in the human respiratory tract. With this in mind, this research consisted of a large number of experimental works to investigate the effects of fiber dimension on the deposition pattern for a human nasal airway. Carbon fibers with uniform diameter (3.66 μm) and polydispersed length were adopted as the test material. Deposition studies were conducted by delivering aerosolized carbon fibers into a nasal airway replica (encompassing the nasal airway regions from vestibule to nasopharynx) at constant inspiratory flow rates of 7.5, 15, 30, and 43.5 l/min. Fibers deposited in each nasal airway region were washed out and the length distribution was determined by microscopic measurement. The results showed that impaction is the dominant deposition mechanism. Most of the fibers with high inertia deposited in the anterior region of the nasal airway (vestibule and nasal valve). In contrast, fibers with low inertia were found to pass through the entire nasal airway easily and collected on the filter at the outlet. Comparing the deposition results between fibers and spherical particles, our data showed that the deposition efficiencies of fibers are significantly lower than that of spherical particles, which implies that the inhaled fibers could pass through the entire nasal airway comparatively easier than spherical particles. Thus, relatively more fibers would be able to enter the lower respiratory tract.  相似文献   

17.
Renal cell carcinoma (RCC) is the most frequent renal tumor and its incidence is increasing worldwide. Tumor angiogenesis is known to play a crucial role in the etiopathogenesis of RCC and over the last few years an even deeper knowledge of its contribution in metastatic RCC development has led to the development of numerous molecular targeting agents (such as sunitinib, sorafenib, pazopanib, axitinib, tivozanib, and dovitinib). The above agents are principally directed against vascular endothelial growth factor receptor (VEGFR) members and also against c-Kit receptor (c-KitR). The role of c-kitR inhibition on clear cell RCC (ccRCC), the main RCC subtype, is less well established. Whether c-kitR activation through its ligand, stem cell factor (SCF) contributes significantly to the effects of tyrosine kinase inhibitors (TKIs) treatment remains to be established. It is important to underscore that the c-KitR is expressed on mast cells (MCs) and cancer cells. After an examination of the c-KitR/SCF pathway, we review here the principal studies that have evaluated c-Kit expression in RCC. Moreover, we summarize some investigations that have observed the distribution of MCs in primary renal cancer and in adjacent normal tissue with appropriate histological immunohistochemical techniques. We also focus on few studies that have evaluated the correlation between RCC proliferation, MC count and microvessel density (MVD), as hallmarks of tumor angiogenesis. Thus, the aim of this review of the literature is to clarify if c-KitR expression, MC count and MVD could have prognostic significance and the possible predictive therapeutic implications in RCC.  相似文献   

18.
Local extracellular acidification occurs at sites of inflammation. Proton-sensing ovarian cancer G-protein-coupled receptor 1 (OGR1, also known as GPR68) responds to decreases in extracellular pH. Our previous studies show a role for OGR1 in the pathogenesis of mucosal inflammation, suggesting a link between tissue pH and immune responses. Additionally, pH-dependent signalling is associated with the progression of intestinal fibrosis. In this study, we aimed to investigate OGR1 expression and OGR1-mediated signalling in patients with inflammatory bowel disease (IBD). Our results show that OGR1 expression significantly increased in patients with IBD compared to non-IBD patients, as demonstrated by qPCR and immunohistochemistry (IHC). Paired samples from non-inflamed and inflamed intestinal areas of IBD patients showed stronger OGR1 IHC staining in inflamed mucosal segments compared to non-inflamed mucosa. IHC of human surgical samples revealed OGR1 expression in macrophages, granulocytes, endothelial cells, and fibroblasts. OGR1-dependent inositol phosphate (IP) production was significantly increased in CD14+ monocytes from IBD patients compared to healthy subjects. Primary human and murine fibroblasts exhibited OGR1-dependent IP formation, RhoA activation, F-actin, and stress fibre formation upon an acidic pH shift. OGR1 expression and signalling increases with IBD disease activity, suggesting an active role of OGR1 in the pathogenesis of IBD.  相似文献   

19.
There is a lack of knowledge regarding the connection between the ocular and nasal epithelia. This narrative review focuses on conjunctival, corneal, ultrastructural corneal stroma, and nasal epithelia as well as an introduction into their interconnections. We describe in detail the morphology and physiology of the ocular surface, the nasolacrimal ducts, and the nasal cavity. This knowledge provides a basis for functional studies and the development of relevant cell culture models that can be used to investigate the pathogenesis of diseases related to these complex structures. Moreover, we also provide a state-of-the-art overview regarding the development of 3D culture models, which allow for addressing research questions in models resembling the in vivo situation. In particular, we give an overview of the current developments of corneal 3D and organoid models, as well as 3D cell culture models of epithelia with goblet cells (conjunctiva and nasal cavity). The benefits and shortcomings of these cell culture models are discussed. As examples for pathogens related to ocular and nasal epithelia, we discuss infections caused by adenovirus and measles virus. In addition to pathogens, also external triggers such as allergens can cause rhinoconjunctivitis. These diseases exemplify the interconnections between the ocular surface and nasal epithelia in a molecular and clinical context. With a final translational section on optical coherence tomography (OCT), we provide an overview about the applicability of this technique in basic research and clinical ophthalmology. The techniques presented herein will be instrumental in further elucidating the functional interrelations and crosstalk between ocular and nasal epithelia.  相似文献   

20.
目的观察重楼提取液对人结肠癌SW480细胞增殖的影响,并探讨其作用机制。方法采用不同浓度(10、20、40、80μg/ml)的重楼提取液,分别作用于体外培养的SW480细胞12、24、36和48h,采用MTT法检测其对SW480细胞的抑制率;并以半数抑制浓度的重楼提取液与体外培养的SW480细胞作用24h后,显微镜下观察细胞形态,并通过流式细胞术分析其对SW480细胞细胞周期的影响,RT-PCR和Western blot法分别测定SW480细胞干细胞因子(SCF)mRNA和蛋白表达的变化。结果各浓度重楼提取液对SW480细胞均有不同程度的抑制作用,且存在剂量-效应和时间-效应关系,重楼提取液作用后的SW480细胞出现变性、坏死的形态改变;经重楼提取液处理24h后,SW480细胞在S期的分布比例下降,G0-G1期和G2/M期细胞分布增多(P<0.05);同时SCF表达增高(P<0.05)。结论重楼提取液可能通过抑制肿瘤细胞的蛋白质与DNA合成,抑制肿瘤细胞的有丝分裂,进而抑制SW480细胞增殖,且其作用机制可能与SCF无关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号