首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gut microbiota is well known as playing a critical role in inflammation and asthma development. The very low-calorie ketogenic diet (VLCKD) is suggested to affect gut microbiota; however, the effects of VLCKD during pregnancy and lactation on the infant gut microbiota are unclear. The VLCKD appears to be more effective than caloric/energy restriction diets for the treatment of several diseases, such as obesity and diabetes. However, whether adherence to VLCKD affects the infant gut microbiota and the protective effects thereof on asthma remains uncertain. The exact mechanisms underlying this process, and in particular the potential role of short chain fatty acids (SCFAs), are still to be unravelled. Thus, the aim of this review is to identify the potential role of SCFAs that underlie the effects of VLCKD during pregnancy and lactation on the infant gut microbiota, and explore whether it incurs significant implications for reducing asthma.  相似文献   

2.
In offspring exposed in utero to a maternal diet high in fat (HF), we have previously demonstrated that despite similar birth weights, HF adult offspring at 6 months of age had significantly higher body weights, greater adiposity, and increased triacylglycerol (TAG) levels as compared to controls. We hypothesized that a maternal HF diet predisposes to offspring adiposity via a programmed increase in the synthesis of monounsaturated fatty acids in the liver and hence increased substrate availability for liver TAG synthesis. We further hypothesized that programmed changes in offspring liver fatty acid metabolism are associated with increased liver expression of the lipogenic enzyme stearoyl‐CoA desaturase‐1 (SCD‐1). Female rats were maintained on a HF diet rich in monounsaturated fatty acids (MUFA) prior to and throughout pregnancy and lactation. After birth, newborns were nursed by the same dam, and all offspring were weaned to control diet. Plasma and liver fatty acid compositions were determined using gas chromatography/mass spectrometry. Fatty acid C16 desaturation indices of palmitoleic/palmitic and (vaccenic + palmitoleic)/palmitic and the C18 desaturation index of oleic/stearic were calculated. Liver protein abundance of SCD‐1 was analyzed in newborns and adult offspring. Plasma and liver C16 desaturation indices were decreased in HF newborns, but increased in the adult offspring. Liver SCD‐1 expression was increased in the HF adult offspring. These data show that the maternal HF diet during pregnancy and lactation increases offspring liver SCD‐1 protein abundance and alters the liver C16 desaturase pathway.  相似文献   

3.
Suboptimal conditions in pregnancy can elicit long-term effects on the health of offspring. The most common outcome is programmed hypertension. We examined whether there are common genes and pathways in the kidney are responsible for generating programmed hypertension among three different models using next generation RNA sequencing (RNA-Seq) technology. Pregnant Sprague-Dawley rats received dexamethasone (DEX, 0.1 mg/kg) from gestational day 16 to 22, 60% high-fructose (HF) diet, or NG-nitro-l-arginine-methyester (l-NAME, 60 mg/kg/day) to conduct DEX, HF, or l-NAME model respectively. All three models elicited programmed hypertension in adult male offspring. We observed five shared genes (Bcl6, Dmrtc1c, Egr1, Inmt, and Olr1668) among three different models. The identified differential genes (DEGs) that are related to regulation of blood pressure included Aqp2, Ptgs1, Eph2x, Hba-a2, Apln, Guca2b, Hmox1, and Npy. RNA-Seq identified genes in arachidonic acid metabolism are potentially gatekeeper genes contributing to programmed hypertension. In addition, HF and DEX increased expression and activity of soluble epoxide hydrolase (Ephx2 gene encoding protein). Conclusively, the DEGs in arachidonic acid metabolism are potentially gatekeeper genes in programmed hypertension. The roles of DEGs identified by the RNA-Seq in this study deserve further clarification, to develop the potential interventions in the prevention of programmed hypertension.  相似文献   

4.
Increased consumption of high fat/sucrose (HF/S) diets has contributed to rising rates of obesity and its co-morbidities globally, while also negatively impacting male reproductive health. Our objective was to examine whether adding a methyl donor cocktail to paternal HF/S diet (HF/S+M) improves health status in fathers and offspring. From 3–12 weeks of age, male Sprague Dawley rats consumed a HF/S or HF/S+M diet. Offspring were followed until 16 weeks of age. Body composition, metabolic markers, gut microbiota, DNA methyltransferase (DNMT) and microRNA expression were measured in fathers and offspring. Compared to HF/S, paternal HF/S+M diet reduced fat mass in offspring (p < 0.005). HF/S+M fathers consumed 16% fewer kcal/day, which persisted in HF/S+M female offspring and was explained in part by changes in serum glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) levels. Compared to HF/S, HF/S+M fathers had a 33% improvement in days until conception and 300% fewer stillbirths. In fathers, adipose tissue DNMT3a and hepatic miR-34a expression were reduced with HF/S+M. Adult male offspring showed upregulated miR-24, -33, -122a and -143 expression while females exhibited downregulated miR-33 expression. Fathers and offspring presented differences in gut microbial signatures. Supplementing a paternal HF/S diet with methyl-donors improved fertility, physiological outcomes, epigenetic and gut microbial signatures intergenerationally.  相似文献   

5.
Changes in dietary composition will have a significant impact on the nutritional status of the mother and the offspring. To examine the relevant hormone level changes during lactation and the expression of fatty acid transporters in the placenta and liver under the condition of a high‐fat (HF) diet, we established HF animal models and conducted a cross‐fostering program to mimic the shift in diet. On gestation day (GD)18, the weight of placenta in the HF group was significantly higher than that in the control group (p < 0.05). HF‐fed male pups had a significantly lower serum insulin level, but the same phenomenon was not found in females. On the contrary, serum triacylglycerol (TAG) level presented a tendency to decrease only in female offspring. Oil red O staining showed lipid accumulation in the HF diet offspring livers. The mRNA levels of FATP4 in the placenta in the HF diet group were significantly upregulated compared to the control diet group (p < 0.05). High‐fat diet (HFD) consumption also altered the liver mRNA levels of FATP4, SREBP‐1, and SCD‐1 in the male offspring, while the changes in protein levels of FATP4 were not observed in either sex. In conclusion, maternal HF diet has a profound impact on offspring growth, metabolism, and the risk of metabolic disorders, which would depend on the exposure period of pregnancy and lactation.  相似文献   

6.
7.
Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.  相似文献   

8.
The concept that hypertension and chronic kidney disease (CKD) originate in early life has emerged recently. During pregnancy, tryptophan is crucial for maternal protein synthesis and fetal development. On one hand, impaired tryptophan metabolic pathway in pregnancy impacts fetal programming, resulting in the developmental programming of hypertension and kidney disease in adult offspring. On the other hand, tryptophan-related interventions might serve as reprogramming strategies to prevent a disease from occurring. In the present review, we aim to summarize (1) the three major tryptophan metabolic pathways, (2) the impact of tryptophan metabolism in pregnancy, (3) the interplay occurring between tryptophan metabolites and gut microbiota on the production of uremic toxins, (4) the role of tryptophan-derived metabolites-induced hypertension and CKD of developmental origin, (5) the therapeutic options in pregnancy that could aid in reprogramming adverse effects to protect offspring against hypertension and CKD, and (6) possible mechanisms linking tryptophan metabolism to developmental programming of hypertension and kidney disease.  相似文献   

9.
Epidemiological and preclinical studies suggest that maternal obesity increases the risk of autism spectrum disorder (ASD) in offspring. Here, we assessed the effects of exposure to modified maternal diets limited to pregnancy and lactation on brain development and behavior in rat offspring of both sexes. Among the studied diets, a maternal high-fat diet (HFD) disturbed the expression of ASD-related genes (Cacna1d, Nlgn3, and Shank1) and proteins (SHANK1 and TAOK2) in the prefrontal cortex of male offspring during adolescence. In addition, a maternal high-fat diet induced epigenetic changes by increasing cortical global DNA methylation and the expression of miR-423 and miR-494. As well as the molecular changes, behavioral studies have shown male-specific disturbances in social interaction and an increase in repetitive behavior during adolescence. Most of the observed changes disappeared in adulthood. In conclusion, we demonstrated the contribution of a maternal HFD to the predisposition to an ASD-like phenotype in male adolescent offspring, while a protective effect occurred in females.  相似文献   

10.
Maternal dietary modifications determine the susceptibility to metabolic diseases in adult life. However, whether maternal high-fat feeding can modulate glucose and lipid metabolism in the early life of offspring is less understood. Furthermore, we explored the underlying mechanisms that influence the phenotype. Using C57BL/6J mice, we examined the effects on the offspring at weaning from dams fed with a high-fat diet or normal chow diet throughout pregnancy and lactation. Gene array experiments and quantitative real-time PCR were performed in the liver tissues of the offspring mice. The offspring of the dams fed the high-fat diet had a heavier body weight, impaired glucose tolerance, decreased insulin sensitivity, increased serum cholesterol and hepatic steatosis at weaning. Bioinformatic analyses indicated that all differentially expressed genes of the offspring between the two groups were mapped to nine pathways. Genes in the peroxisome proliferator-activated receptor (PPAR) signaling pathway were verified by quantitative real-time PCR and these genes were significantly up-regulated in the high-fat diet offspring. A maternal high-fat diet during pregnancy and lactation can modulate hepatic glucose, lipid homeostasis, and gene expression in the PPAR signaling in the early life of offspring, and our results suggested that potential mechanisms that influences this phenotype may be related partially to up-regulate some gene expression in the PPAR signalling pathway.  相似文献   

11.
Excess dietary fructose is a major public health concern, yet little is known about its influence on offspring development and later-life disease when consumed in excess during pregnancy. To determine whether increased maternal fructose intake could have long-term consequences on offspring health, we investigated the effects of 10% w/v fructose water intake during preconception and pregnancy in guinea pigs. Female Dunkin Hartley guinea pigs were fed a control diet (CD) or fructose diet (FD; providing 16% of total daily caloric intake) ad libitum 60 days prior to mating and throughout gestation. Dietary interventions ceased at day of delivery. Offspring were culled at day 21 (D21) (weaning) and at 4 months (4 M) (young adult). Fetal exposure to excess maternal fructose intake significantly increased male and female triglycerides at D21 and 4 M and circulating palmitoleic acid and total omega-7 through day 0 (D0) to 4 M. Proteomic and functional analysis of significantly differentially expressed proteins revealed that FD offspring (D21 and 4 M) had significantly increased mitochondrial metabolic activities of β-oxidation, electron transport chain (ETC) and oxidative phosphorylation and reactive oxygen species production compared to the CD offspring. Western blotting analysis of both FD offspring validated the increased protein abundances of mitochondrial ETC complex II and IV, SREBP-1c and FAS, whereas VDAC1 expression was higher at D21 but lower at 4 M. We provide evidence demonstrating offspring programmed hepatic mitochondrial metabolism and de novo lipogenesis following excess maternal fructose exposure. These underlying asymptomatic programmed pathways may lead to a predisposition to metabolic dysfunction later in life.  相似文献   

12.
Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. We aimed to investigate the effect of maternal and postnatal high LA (HLA) diet on plasma FA composition, plasma and hepatic lipids and genes involved in lipid metabolism in the liver of adult offspring. Female rats were fed with low LA (LLA; 1.44% LA) or HLA (6.21% LA) diets for 10 weeks before pregnancy, and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), fed either LLA or HLA diets and sacrificed at PN180. Postnatal HLA diet decreased circulating total n-3 PUFA and alpha-linolenic acid (ALA), while increased total n-6 PUFA, LA and arachidonic acid (AA) in both male and female offspring. Maternal HLA diet increased circulating leptin in female offspring, but not in males. Maternal HLA diet decreased circulating adiponectin in males. Postnatal HLA diet significantly decreased aspartate transaminase (AST) in females and downregulated total cholesterol, HDL-cholesterol and triglycerides in the plasma of males. Maternal HLA diet downregulated the hepatic mRNA expression of Hmgcr in both male and female offspring and decreased the hepatic mRNA expression of Cpt1a and Acox1 in females. Both maternal and postnatal HLA diet decreased hepatic mRNA expression of Cyp27a1 in females. Postnatal diet significantly altered circulating fatty acid concentrations, with sex-specific differences in genes that control lipid metabolism in the adult offspring following exposure to high LA diet in utero.  相似文献   

13.
Resveratrol can affect the physiology or biochemistry of offspring in the maternal–fetal animal model. However, it exhibits low bioavailability in humans and animals. Fifteen-week SD pregnant female rats were orally administered bisphenol A (BPA) and/or resveratrol butyrate ester (RBE), and the male offspring rats (n = 4–8 per group) were evaluated. The results show that RBE treatment (BPA + R30) compared with the BPA group can reduce the damage caused by BPA (p < 0.05). RBE enhanced the expression of selected genes and induced extramedullary hematopoiesis and mononuclear cell infiltration. RBE increased the abundance of S24-7 and Adlercreutzia in the intestines of the male offspring rats, as well as the concentrations of short-chain fatty acids (SCFAs) in the feces. RBE also increased the antioxidant capacity of the liver by inducing Nrf2, promoting the expression of HO-1, SOD, and CAT. It also increased the concentration of intestinal SCFAs, enhancing the barrier formed by intestinal cells, thereby preventing BPA-induced metabolic disruption in the male offspring rats, and reduced liver inflammation. This study identified a potential mechanism underlying the protective effects of RBE against the liver damage caused by BPA exposure during the peri-pregnancy period, and the influence of the gut microbiota on the gut–liver axis in the offspring.  相似文献   

14.
The gut microbiome has attracted increasing attention from researchers in recent years. The microbiota can have a specific and complex cross-talk with the host, particularly with the central nervous system (CNS), creating the so-called “gut–brain axis”. Communication between the gut, intestinal microbiota, and the brain involves the secretion of various metabolites such as short-chain fatty acids (SCFAs), structural components of bacteria, and signaling molecules. Moreover, an imbalance in the gut microbiota composition modulates the immune system and function of tissue barriers such as the blood–brain barrier (BBB). Therefore, the aim of this literature review is to describe how the gut–brain interplay may contribute to the development of various neurological disorders, combining the fields of gastroenterology and neuroscience. We present recent findings concerning the effect of the altered microbiota on neurodegeneration and neuroinflammation, including Alzheimer’s and Parkinson’s diseases, as well as multiple sclerosis. Moreover, the impact of the pathological shift in the microbiome on selected neuropsychological disorders, i.e., major depressive disorders (MDD) and autism spectrum disorder (ASD), is also discussed. Future research on the effect of balanced gut microbiota composition on the gut–brain axis would help to identify new potential opportunities for therapeutic interventions in the presented diseases.  相似文献   

15.
This study evaluates the effects of a westernized diet during the perinatal period on the maternal performance and growth and development of rat offspring. Female Wistar rats were fed with either a control (C) diet, with casein as the protein source or a westernized (W) diet, during pregnancy and lactation. The pups were divided, eight per group, into the same diet groups as their dams. During lactation, the body weight (day 1, W = 6.85 ± 0.62 g, C = 5.81 ± 0.49, p < 0.05; day 21, W = 55.42 ± 3.78, C = 47.75 ± 3.45, p < 0.001) and somatic growth (body length day 1, W = 53.24 ± 2.16, C = 50.641 ± 1.79, p < 0.05; day 21, W = 124.8, C = 119.903 ± 3.71, p < 0.001) in the male offspring showed significant differences among the groups. The physical appearance and reflex maturation showed differences between day 1 and day 3. With the westernized diet, during the perinatal period, no alterations in maternal weight gain, gestation or performance were observed; however, changes in the coefficients of feed efficiency and energy during lactation were noted. Besides, blood glucose was found to be elevated at the end of lactation (C = 3.67 ± 0.35 mmol/l, W = 5.2 0 ± 0.49 mmol/l). At 21 days, the male pups from the dams on the westernized diet were 15 % heavier, and the maturation of the neural reflexes and physical characteristics were found to occur earlier. Therefore, the consumption of a westernized diet during the perinatal period was independent of maternal energy intake, and influenced the growth and development of offspring.  相似文献   

16.
Maternal perinatal nutrition may program offspring metabolic features. Epigenetic regulation is one of the candidate mechanisms that may be affected by maternal dietary methyl donors intake as potential controllers of plasma homocysteine levels. Thirty-two Wistar pregnant rats were randomly assigned into four dietary groups during lactation: control, control supplemented with methyl donors, high-fat-sucrose and high-fat-sucrose supplemented with methyl donors. Physiological outcomes in the offspring were measured, including hepatic mRNA expression and global DNA methylation after weaning. The newborns whose mothers were fed the obesogenic diet were heavier longer and with a higher adiposity and intrahepatic fat content. Interestingly, increased levels of plasma homocysteine induced by the maternal high-fat-sucrose dietary intake were prevented in both sexes by maternal methyl donors supplementation. Total hepatic DNA methylation decreased in females due to maternal methyl donors administration, while Dnmt3a hepatic mRNA levels decreased accompanying the high-fat-sucrose consumption. Furthermore, a negative association between Dnmt3a liver mRNA levels and plasma homocysteine concentrations was found. Maternal high-fat-sucrose diet during lactation could program offspring obesity features, while methyl donors supplementation prevented the onset of high hyperhomocysteinemia. Maternal dietary intake also affected hepatic DNA methylation metabolism, which could be linked with the regulation of the methionine-homocysteine cycle.  相似文献   

17.
18.
Hypertension is an important component of metabolic syndrome. Adulthood hypertension and metabolic syndrome can be programmed in response to nutritional insults in early life. Peroxisome proliferator-activated receptors (PPARs) serve as a nutrient-sensing signaling linking nutritional programming to hypertension and metabolic syndrome. All three members of PPARs, PPARα, PPARβ/δ, and PPARγ, are expressed in the kidney and involved in blood pressure control. This review provides an overview of potential clinical applications of targeting on the PPARs in the kidney to prevent programmed hypertension and metabolic syndrome, with an emphasis on the following areas: mechanistic insights to interpret programmed hypertension; the link between the PPARs, nutritional insults, and programmed hypertension and metabolic syndrome; the impact of PPAR signaling pathway in a maternal high-fructose model; and current experimental studies on early intervention by PPAR modulators to prevent programmed hypertension and metabolic syndrome. Animal studies employing a reprogramming strategy via targeting PPARs to prevent hypertension have demonstrated interesting results. It is critical that the observed effects on developmental reprogramming in animal models are replicated in human studies, to halt the globally-growing epidemic of metabolic syndrome-related diseases.  相似文献   

19.
Dietary changes are known to alter the composition of the gut microbiome. However, it is less understood how repeatable and reversible these changes are and how diet switches affect the microbiota in the various segments of the gastrointestinal tract. Here, a treatment group of conventionally raised laboratory mice is subjected to two periods of western diet (WD) interrupted by a period of standard diet (SD) of the same duration. Beta-diversity analyses show that diet-induced microbiota changes are largely reversible (q = 0.1501; PERMANOVA, weighted-UniFrac comparison of the treatment-SD group to the control-SD group) and repeatable (q = 0.032; PERMANOVA, weighted-UniFrac comparison of both WD treatments). Furthermore, we report that diet switches alter the gut microbiota composition along the length of the intestinal tract in a segment-specific manner, leading to gut segment-specific Firmicutes/Bacteroidota ratios. We identified prevalent and distinct Amplicon Sequencing Variants (ASVs), particularly in genera of the recently described Muribaculaceae, along the gut as well as ASVs that are differentially abundant between segments of treatment and control groups. Overall, this study provides insights into the reversibility of diet-induced microbiota changes and highlights the importance of expanding sampling efforts beyond the collections of fecal samples to characterize diet-dependent and segment-specific microbiome differences.  相似文献   

20.
Short-chain fatty acids (SCFAs) mediate the transmission of signals between the microbiome and the immune system and are responsible for maintaining balance in the anti-inflammatory reaction. Pregnancy stages alter the gut microbiota community structure, which also synthesizes SCFAs. The study involved 90 pregnant women, divided into two groups: 48 overweight/obese pregnant women (OW) and 42 pregnant women with normal BMI (CG). The blood samples for glucose, insulin, and HBA1c were analyzed as well as stool samples for SCFA isolation (C2:0; C3:0; C4:0i; C4:0n; C5:0i; C5:0n; C6:0i; C6:0n) using gas chromatography. The SCFA profile in the analyzed groups differed significantly. A significant positive correlation between C2:0, C3:0, C4:0n and anthropometric measurements, and between C2:0, C3:0, C4:0n, and C5:0n and parameters of carbohydrate metabolism was found. SCFA levels fluctuate during pregnancy and the course of pregnancy and participate in the change in carbohydrate metabolism as well. The influence of C2:0 during pregnancy on anthropometric parameters was visible in both groups (normal weight and obese). Butyrate and propionate regulate glucose metabolism by stimulating the process of intestinal gluconeogenesis. The level of propionic acid decreases with the course of pregnancy, while its increase is characteristic of obese women, which is associated with many metabolic adaptations. Propionic and linear caproic acid levels can be an important critical point in maintaining lower anthropometric parameters during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号