共查询到19条相似文献,搜索用时 65 毫秒
1.
针对大规模复杂工业过程,提出一种基于多块核主元分析(MBKPCA)和符号有向图(SDG)的故障诊断方法。首先,提出基于SDG和优先级的分块策略,以强连接元SCC为最高优先级、多入/出度节点群为次高优先级、节点链为最低优先级对过程进行分块;在此基础上,采用MBKPCA进行过程监控,对于检测到的故障,先确定故障发生在哪一个数据块,再触发SDG在故障块内完成故障定位。所提出方法克服了多块KPCA故障隔离不完全和SDG推理过程中组合爆炸的缺点,可以提高复杂工业过程故障诊断的准确度和速度。基于Tennessee Eastman过程的仿真研究表明了所提出故障诊断方法的有效性。 相似文献
2.
针对复杂工业过程中故障诊断技术存在数据可分性差、噪声干扰、故障定位困难的问题,提出一种基于多块相对变换独立主元分析(MBRTICA)的故障诊断方法.为了使所提取的故障特征具有可分性,采用相对变换原理与FastICA算法融合的方式构建相对变换独立主元分析方法(RTICA)用于检测故障的发生.通过引入多块理论,将高维数据分成多个子块单元,并在每个子块单元内分别进行RTICA处理,确定故障发生的位置.最后用电主轴轴承裂纹故障的实验对所提方法进行验证,实验结果表明,基于MBRTICA的故障诊断方法可提高数据的可分性,能够有效减少噪声,同时提高故障检测的精度, 实现故障定位功能, 全面地对故障进行分析. 相似文献
3.
基于多水下机器人系统(MAUVS)进行单水下机器人(AUV)推进器故障检测,提出AUV 声纳模拟
方法,分析了故障前后各传感器的信号特征,提出在时间序列和空间序列上进行故障概率融合的方法.提出了基于
速度和角度残差的故障基本概率分配函数.鉴于AUV 概率检测的不确定性影响,改进了时间和证据融合节拍的方
法.水下机器人水池实验结果验证了所提出的信息融合故障检测方法在增强故障证据的可信度及检测实时性、提高
检测效率方面的有效性,为多水下机器人系统推进器的故障检测提供了一种可选方案. 相似文献
4.
多块策略广泛应用于全流程过程监控领域,以解决变量关系复杂性较高的问题,但传统分块方法得到的子块数据存在高斯与非高斯混合分布问题,影响过程监控的效果.为此,提出一种基于多块MICA-PCA的过程监控方法.首先采用Jarque-Bera(J-B)检测方法对原始数据进行高斯与非高斯分块;然后利用Hellinger距离(HD)方法获得高斯与非高斯子块,通过对高斯与非高斯子块采用不同的建模和诊断方法,提高监控效果;最后将该方法应用于田纳西-伊斯曼(TE)过程的监控中,以验证所提出方法的有效性. 相似文献
5.
主元个数是PCA模型的关键参数,其选取直接决定PCA的故障诊断性能;针对传统主元个数选取方法主观性较大,且不考虑故障诊断要求的缺点,提出一种改进的主元个数确定方法;该方法将传统的累积方差贡献率与故障检测率相结合,首先利用累积方差贡献率初步确定主元个数,然后确定满足故障检测率要求的主元个数,将两个主元个数进行比较,从而获得最佳主元个数;与单纯累积方差贡献率方法相比,提高了主元模型的精度,减少了以往方法中人为因素的影响;通过对卫星控制系统的故障检测,证实了该方法可大大提高故障检测准确率。 相似文献
6.
8.
针对多阶段过程数据具有多中心和各工序结构不同的特征问题,提出了一种基于改进的局部近邻标准化和k近邻的故障检测(ILNS-kNN)方法。首先寻找样本的前k个近邻样本的前K局部近邻集;其次使用局部近邻集的均值和标准差来标准化样本,获得标准样本;最后在标准样本集上计算样本的累积近邻距离作为检测指标进行故障检测。改进的局部近邻标准化(ILNS)将各阶段数据的中心平移到原点,并且调整各阶段数据的离散程度,使之近似相等,从而将多阶段过程数据融合为服从单一多元高斯分布的单阶段数据。进行了青霉素发酵过程故障检测实验。实验结果表明ILNS-kNN方法对所设置的六类故障的检测率高于97%。ILNS-kNN方法在保持对一般多阶段过程故障的检测能力的同时,能够实现对阶段方差差异显著的多阶段过程故障的检测,从而更好地保证多阶段生产过程的安全性和产品的高质量。 相似文献
9.
本文将动态主元分析(Dynamic Principal Component Analysis, DPCA)和稀疏主元分析(Sparse Principal Component Analysis, SPCA)两种方法结合起来,提出一种新的稀疏动态主元分析方法,并将其用于工业过程的故障检测。所提出的稀疏动态主元分析方法通过对过程数据的动态增广矩阵进行稀疏主元的求解,获取稀疏的负荷向量,该方法既考虑到了过程数据的动态特性,又降低了过程数据的冗余度,同时降低了计算负荷,非常适合工业过程的实时故障检测。此外,本文还提出了一种前向选择算法,用于确定稀疏主元中的非零负荷数目。最后,将所提出方法应用于数值例子和田纳西-伊斯曼过程,并将与主元分析、动态主元分析和稀疏主元分析等三种方法相比较,表明所提方法可以获得更好的故障检测效果。 相似文献
10.
11.
12.
针对工业系统监测数据为非线性,且难以辨识复杂工作过程中故障位置的问题,提出一种基于分块核主成分分析(BKPCA)和最小二乘支持向量机(LS–SVM)的集成故障检测方法.首先对系统监测变量进行分块,使用KPCA对每个分块在特征空间中建立T2和平方预测误差(SPE)统计量来实时监测系统健康状态,并使用LS–SVM对上述过程检测出来的故障数据进行再次判断.随后计算出现故障后计算每一分块的故障贡献率,进而确定发生故障的分块.由于采用了并行分块算法,可以较简单的确定故障发生位置,提高计算效率,同时LS–SVM方法的应用也可以提升故障检测的精度.使用田纳西–伊斯曼化工(TE)过程数据对本文所提方法进行仿真验证,试验结果表明所提方法取得了较好效果. 相似文献
13.
14.
基于核主元分析–主元分析的多阶段间歇过程故障监测与诊断 总被引:1,自引:0,他引:1
具有过渡特性的多阶段间歇过程故障监测是一个复杂的问题,既需要考虑稳定阶段下的故障监测,也需要考虑不同阶段间的过渡故障监测.为克服传统硬划分方法导致误警和漏报率高的缺陷,同时也为实现更加精确、有效的故障监测与诊断,提出一套完整的基于核主元分析-主元分析(KPCA-PCA)的多阶段间歇过程故障监测与诊断策略.该方法依据数据相似度实现阶段划分,定义模糊隶属度辨识相邻阶段间的过渡,最后对稳定阶段和过渡过程分别建立具有时变协方差的PCA和KPCA故障监测与诊断模型.通过对青霉素发酵过程的仿真平台及工业应用研究表明,该方法具有更可靠的监控性能,能及时、准确的检测出过程中存在的异常情况. 相似文献
15.
针对协方差结构具有显著差异的多模态过程故障检测问题,本文提出一种基于密度标准误差的局部保持投影故障检测策略(LPP-DSE).首先,根据样本距离矩阵确定样本截止距离;接下来,应用截止距离计算每个样本的本质密度及其前k近邻样本的估计密度;最后,通过样本的密度误差及其k近邻密度的标准差构建统计量并完成过程监控.本文方法通过应用局部保持投影(LPP)对过程数据进行维数约减可以保证过程监控的及时性;同时,通过设计密度标准误差(DSE)统计量可以有效提高多模态过程的故障检测率.此外,本文给出基于贡献图的诊断方法能够准确识别故障发生的原因.通过数值例子和半导体工业实例测试,并与主元分析、邻域保持嵌入、局部保持投影、k近邻故障检测等方法比较,实验结果进一步验证了LPP-DSE方法的有效性. 相似文献
16.
17.
导航系统中冗余IMU传统故障检测方法由于数学模型过于复杂,计算量大,存在较大延时,难以实现实时故障检测,而主成分分析法仅仅应用于静态情况下的故障检测与隔离,针对主成分分析法无法在动态情况下对冗余IMU进行故障检测的缺点,提出了一种基于奇偶空间法改进主成分分析的故障检测算法,该方法利用奇偶向量隔离车辆的动态变量,以消除动态变量对故障检测的影响,再用PCA方法检测数据以实现对车辆传感器信息的实时检测,通过将原始数据集转置到特征平面来形成图案,实现了IMU传感器正常与故障模式的准确分离,提高了冗余IMU故障检测的结果精确性和可靠性。实验结果表明,该方法能够较好检测动态状态下冗余IMU的故障,提高了主成分分析的故障检测性能,可有效消除导航系统运动的负面影响。 相似文献
18.
基于改进主元分析方法的化工生产过程的故障检测 总被引:1,自引:0,他引:1
针对化工生产过程中出现的对于过程影响较小的故障,提出一种改进主元分析方法,该方法引入了主元子空间之间的差别的概念.仿真研究中,将该方法与传统的主元分析方法同时应用于TE过程中,结果表明改进主元分析方法比传统的主元分析方法(PCA)能更好的检测出对于过程影响较小的故障. 相似文献
19.
为了解决已有信息抽取系统中方法不具有重用性及不能抽取语义信息的问题,提出了一个基于领域本体的面向主题的Web信息抽取框架.对Web中文页面,借助外部资料,利用本体解析信息,对文件采集及预处理中的源文档及信息采集、文档预处理、文档存储等技术进行了分析设计,提出了文本转换中的分词及词表查询和命名实体识别算法,并给出了一种知识抽取方案.实验结果表明,该方法可以得到性能较高的抽取结果. 相似文献