首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为了提高多目标优化算法解集的分布性和收敛性,提出一种基于分解和差分进化的多目标粒子群优化算法(dMOPSO-DE).该算法通过提出方向角产生一组均匀的方向向量,确保粒子分布的均匀性;引入隐式精英保持策略和差分进化修正机制选择全局最优粒子,避免种群陷入局部最优Pareto前沿;采用粒子重置策略保证群体的多样性.与非支配排序(NSGA-II)算法、多目标粒子群优化(MOPSO)算法、分解多目标粒子群优化(dMOPSO)算法和分解多目标进化-差分进化(MOEA/D-DE)算法进行比较,实验结果表明,所提出算法在求解多目标优化问题时具有良好的收敛性和多样性.  相似文献   

2.
量子多目标进化算法研究   总被引:1,自引:2,他引:1  
本文首次将量子计算的理论用于多目标优化,提出量子多目标进化算法(QMOEA),其采用量子位染色体表示法,利用量子门旋转策略和量子变异实现群体的进化,使用ε支配关系构造外部种群以此保持算法的较好分布性,提出基于快速排序的非劣最优解构造方法加快算法运行效率,实验表明,这种方法与经典的多目标进化算法SPEA2相比,其收敛性更好且分布更均匀  相似文献   

3.
宋通  庄毅 《计算机科学》2012,39(8):205-209
针对差分进化算法(Differential Evolution Algorithm,DE)求解多目标优化问题时易陷入局部最优的问题,设计了一种双向搜索机制,它通过对相反进化方向产生的两个子代个体进行评价,来增强DE算法的局部搜索能力;设计了多种群机制,它可令各子群独立进化一定次数再执行全局进化,以完成子群间进化信息的交流,这一方面降低了算法陷入局部最优的风险,另一方面增强了Pareto解集的多样性,使Pareto前沿面的解集分布更为均匀。实验结果表明,相比于NSGA-II等同类算法,所提方法在搜索Pareto最优解时效率更高,并且Pareto最优解集的精度及分布程度比前者更好。  相似文献   

4.
第一次将量子计算的理论用途于多目标优化之上可以提出量子多目标进化算法其采用量子位研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。  相似文献   

5.
贺群  程格  安军辉  戴光明  彭雷 《计算机科学》2012,39(103):489-492
为了克服部分多目标进化算法中容易出现退化与早熟,造成收敛速度过慢的不足,结合精英保留策略、基于近部规则的环境选择以及免疫克隆算法中的比例克隆等思想,提出一种基于Pareto的多目标克隆进化算法NPCA(Non-dominated Pareto Clonal Algorithm)。通过部分多目标优化测试函数ZDT和DTLZ对算法进行了性能测试,验证了该算法能获得分布更加均匀的Parcto前沿,解的收敛性明显优于典型的多目标进化算法。  相似文献   

6.
差分进化是一种有效的优化技术,已成功用于多目标优化问题。但也存在Pareto最优集合的收敛慢和多样性差等问题。针对上述不足,本文提出了一种基于分解和多策略变异的多目标差分进化算法(MODE/DMSM)。该算法利用基于分解的方法将多目标优化问题分解为多个单目标优化问题;通过高效的非支配排序方法选择具有良好收敛性和多样性的解来指导差分进化过程;采用了多策略变异方法来平衡进化过程中收敛性和多样性。在ZDT和DTLZ的10个测试函数上的仿真结果表明,本文算法在Parato最优集合的收敛性和多样性优于其他六种代表性多目标优化算法。  相似文献   

7.
一种基于邻域的多目标进化算法   总被引:1,自引:0,他引:1  
种群维护是多目标进化算法的重要组成部分。针对维护方法和运行效率的矛盾,提出一种基于邻域的多目标进化算法(NMOEA)。定义了一个反映个体之间邻近程度的指标--邻域包含关系,利用此关系对个体进行分布适应度分级的赋值,并用动态方法快速地对种群进行维护。通过7个测试问题和3个方面的测试标准,结果表明新算法在较快速地接近真实的最优面的同时,拥有良好的分布性。  相似文献   

8.
针对基于帕累托(Pareto)支配的多目标进化算法在解决高维问题时选择压力降低,以及基于分解的多目标进化算法在提高收敛性和分布性的同时降低了种群多样性的问题,提出了一种基于最小距离和聚合策略的分解多目标进化算法。首先,使用基于角度分解的技术将目标空间分解为指定个数的子空间来提高种群的多样性;然后,在生成新解的过程中加入基于聚合的交叉邻域方法,使生成的新解更接近于父代解;最后,分两阶段在每个子空间内基于最小距离和聚合策略来选择解以提高收敛性和分布性。为了验证所提算法的可行性,采用标准测试函数ZDT和DTLZ进行仿真实验,结果表明所提算法的总体性能均优于经典的基于分解的多目标进化算法(MOEA/D)、MOEA/D-DE、NSGA-Ⅲ和GrEA。可见,所提算法在提高多样性的同时可以有效平衡收敛性和多样性。  相似文献   

9.
基于指标的多目标进化算法研究   总被引:2,自引:1,他引:1       下载免费PDF全文
张景成  戴光明 《计算机工程》2009,35(23):187-189
基于指标的进化算法(IBEA)是一个出色的多目标优化算法。IBEA具有良好的收敛性,但在保持解的多样性方面对于某些问题却表现较差。对IBEA进行研究,分析其适应度分配原理,针对其缺点进行改进,并将IBEA与其他2个算法进行了测试比较。测试结果表明改进后的IBEA在保持了原算法优点的情况下使其在解的多样性方面有了较大改观。  相似文献   

10.
个体的适应度赋值和群体的多样性维护是进化算法的两个关键问题。首先,一方面,定义了Paretoε-支配关系的相关概念,通过Paretoε-支配关系确定个体的强度Pareto值,根据个体的强度Pareto值对群体进行Pareto分级排序,实现优胜劣汰;另一方面,使用拥挤距离估算个体的拥挤密度,淘汰位于拥挤区的一些个体,维持群体的多样性。然后,根据差分进化算法的特点,使用适当的进化策略和控制参数,给出了一种用于求解多目标优化问题的差分进化算法DEAMO。最后,数值实验表明,DEAMO在求解标准的多目标优化问题时性能表现优良。  相似文献   

11.
多因子优化是一类新的优化问题。多因子进化算法受到多因子遗传模型的启发,利用进化个体的单一种群,能够同时求解跨域的多个优化问题。它属于一种文化基因算法,是智能计算领域新近涌现的研究热点。介绍了多因子进化算法的生物学基础、算法流程,以及文化基因算法的基本概念。然后从工作机理、算法改进、典型应用领域等角度,系统总结了前人的理论和应用成果。最后,指出了将来研究所面临的若干挑战和机遇,以推动学科发展。  相似文献   

12.
Nanoscale crossbar architectures have received steadily growing interests as a result of their great potential to be main building blocks in nanoelectronic circuits. However, due to the extremely small size of nanodevices and the bottom-up self-assembly nanofabrication process, considerable process variation will be an inherent vice for crossbar nanoarchitectures. In this paper, the variation tolerant logical mapping problem is treated as a bilevel multiobjective optimization problem. Since variation mapping is an NP-complete problem, a hybrid multiobjective evolutionary algorithm is designed to solve the problem adhering to a bilevel optimization framework. The lower level optimization problem, most frequently tackled, is modeled as the min–max-weight and min-weight-gap bipartite matching (MMBM) problem, and a Hungarian-based linear programming (HLP) method is proposed to solve MMBM in polynomial time. The upper level optimization problem is solved by evolutionary multiobjective optimization algorithms, where a greedy reassignment local search operator, capable of exploiting the domain knowledge and information from problem instances, is introduced to improve the efficiency of the algorithm. The numerical experiment results show the effectiveness and efficiency of proposed techniques for the variation tolerant logical mapping problem.  相似文献   

13.
邱兴兴  张珍珍  魏启明 《计算机应用》2014,34(10):2880-2885
在多目标进化优化中,使用分解策略的基于分解的多目标进化算法(MOEA/D)时间复杂度低,使用〖BP(〗强度帕累托策略的〖BP)〗强度帕累托进化算法-2(SPEA2)能得到分布均匀的解集。结合这两种策略,提出一种新的多目标进化算法用于求解具有复杂、不连续的帕累托前沿的多目标优化问题(MOP)。首先,利用分解策略快速逼近帕累托前沿;然后,利用强度帕累托策略使解集均匀分布在帕累托前沿,利用解集重置分解策略中的权重向量集,使其适配于特定的帕累托前沿;最后,利用分解策略进一步逼近帕累托前沿。使用的反向世代距离(IGD)作为度量标准,将新算法与MOEA/D、SPEA2和paλ-MOEA/D在12个基准问题上进行性能对比。实验结果表明该算法性能在7个基准问题上最优,在5个基准问题上接近于最优,且无论MOP的帕累托前沿是简单或复杂、连续或不连续的,该算法均能生成分布均匀的解集。  相似文献   

14.
Decomposition is a representative method for handling many-objective optimization problems with evolutionary algorithms. Classical decomposition scheme relies on a set of uniformly distributed reference vectors to divide the objective space into multiple subregions. This scheme often works poorly when the problem has an irregular Pareto front due to the inconsistency between the distribution of reference vectors and the shape of Pareto fronts. We propose in this paper an adaptive weighted decomposition based many-objective evolutionary algorithm to tackle complicated many-objective problems whose Pareto fronts may or may not be regular. Unlike traditional decomposition based algorithms that use a pre-defined set of reference vectors, the reference vectors in the proposed algorithm are produced from the population during the search. The experiments show that the performance of the proposed algorithm is competitive with other state-of-the-art algorithms and is less-sensitive to the irregularity of the Pareto fronts.  相似文献   

15.
Robust optimization is a popular method to tackle uncertain optimization problems. However, traditional robust optimization can only find a single solution in one run which is not flexible enough for decision-makers to select a satisfying solution according to their preferences. Besides, traditional robust optimization often takes a large number of Monte Carlo simulations to get a numeric solution, which is quite time-consuming. To address these problems, this paper proposes a parallel double-level multiobjective evolutionary algorithm (PDL-MOEA). In PDL-MOEA, a single-objective uncertain optimization problem is translated into a bi-objective one by conserving the expectation and the variance as two objectives, so that the algorithm can provide decision-makers with a group of solutions with different stabilities. Further, a parallel evolutionary mechanism based on message passing interface (MPI) is proposed to parallel the algorithm. The parallel mechanism adopts a double-level design, i.e., global level and sub-problem level. The global level acts as a master, which maintains the global population information. At the sub-problem level, the optimization problem is decomposed into a set of sub-problems which can be solved in parallel, thus reducing the computation time. Experimental results show that PDL-MOEA generally outperforms several state-of-the-art serial/parallel MOEAs in terms of accuracy, efficiency, and scalability.  相似文献   

16.
选择是进化的主要驱动力,也是多目标进化算法的关键特征,然而,在处理高维多目标问题时,随着目标维数的增加种群的收敛性和分布性的冲突加剧,传统多目标进化算法中的选择算子已难以有效地维持种群的收敛性与分布性之间的平衡.针对该问题,提出一种基于向量角分解的高维多目标进化算法.首先,将个体本身作为参考向量,利用目标向量之间的夹角...  相似文献   

17.
为了在动态环境中很好地跟踪最优解,考虑动态优化问题的特点,提出一种新的多目标预测遗传算法.首先对 Pareto 前沿面进行聚类以求得解集的质心;其次应用该质心与参考点描述 Pareto 前沿面;再次通过预测方法给出预测点集,使得算法在环境变化后能够有指导地增加种群多样性,以便快速跟踪最优解;最后应用标准动态测试问题进行算法测试,仿真分析结果表明所提出算法能适应动态环境,快速跟踪 Pareto 前沿面.  相似文献   

18.
通过设计一种新的量子个体更新策略,提出了改进的多宇宙并行量子进化算法,并对算法的收敛性进行了分析探讨,从理论上证明了该算法的有效性,最后将该算法用于多目标0/1背包问题。仿真结果表明:改进方法能够找到接近Pareto最优前端的更好的解,同时维持解分布的均匀性。  相似文献   

19.
多宇宙并行量子多目标进化算法   总被引:1,自引:1,他引:1       下载免费PDF全文
提出了一种新的基于量子计算的多目标进化算法,即多宇宙并行量子多目标进化算法。算法中将所有的量子个体按给定的拓扑结构分成多个独立子种群,划分为多个宇宙;采用目标个体均匀分配原则和动态调整旋转角机制对各宇宙量子个体进行演化;宇宙之间采用最佳移民操作来交换信息,设计最优个体保留方案以便各宇宙共享全局信息,提高算法的执行效率。该算法用于多目标0/1背包问题的仿真结果表明:新方法能够找到接近Pareto最优前端的更好的解,同时维持解分布的均匀性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号