共查询到20条相似文献,搜索用时 80 毫秒
1.
多元时间序列包含丰富的变量,且变量间存在着相关性,相互影响,可能会降低某一变量的预测精度.为此,本文提出了一种基于RNN和CNN的混合模型.模型利用互信息法进行特征选择,通过融合CNN的抽象特征提取以及GRU的时序信息提取来预测未来7个单位时刻的数据.实验表明,模型的预测效果优于LSTM等模型.此外,为了检验所构建的模型的泛用性,在PM2.5数据集和SML2010数据集上进行了对比测试,同样证明了模型的优越性. 相似文献
2.
3.
4.
随着数据采集技术的蓬勃发展,各个领域的时空数据不断累积,迫切需要探索高效的时空数据预测方法.深度学习是一种基于人工神经网络的机器学习方法,能有效地处理大规模的复杂数据,因而研究基于深度学习的时空序列预测方法具有十分重要的意义.在这一背景下,针对已有的预测方法进行归纳和总结,首先回顾了深度学习在时空序列预测中的应用背景和... 相似文献
5.
时间序列在现实生活中具有广泛的用途,使用时间序列预测模型能够预估序列的未来变化趋势,为决策提供支撑.对于多变量时间序列的预测研究,已经提出了很多模型,但已有方法存在如下问题:不能同时考虑时间序列本身和协变量的信息;忽略了多变量时间序列中的全局信息;不能对预测结果进行解释.针对这些问题,本文提出了一个基于深度学习的多变量时间序列预测模型TEDGER,可以提取隐藏在单个时间序列中的序列模式和隐藏在多变量时间序列中的全局特征,并将序列模式和全局特征进行融合,通过残差预测的方式实现时间序列的预测.本文所提模型在真实的时间序列数据集上进行了实验评估.结果表明,本文提出的模型在预测准确度上超越了其他基准模型,同时模型拥有一定的可解释性. 相似文献
6.
7.
精确的电力负荷预测对智能电网等基础设施的高效管理至关重要.本文引入了几种深度学习网络:RNN、LSTM、DNN,对某地某家庭短期内实际电力负荷值的消耗进行仿真预测,实验结果表明,RNN、LSTM和DNN模型下的预测值与真实值的大致趋势均一致,模型效果差距不大,RNN略好于DNN,DNN略好于LSTM,整体仍有优化空间. 相似文献
8.
一种基于时间序列模型的风速预测方法 总被引:1,自引:0,他引:1
根据风速数据特点,提出一种基于时间序列的风速预测模型,对模型中的相关参数进行确定。实验结果表明,对风速进行提前1小时预测时,预测风速与实际风速较吻合,误差仅为10%,从而为大气污染物浓度确定提供有效依据。 相似文献
9.
基于周期性建模的时间序列预测方法及电价预测研究 总被引:3,自引:2,他引:3
时间序列数据广泛存在于人类的生产生活中, 通常具有复杂的非线性动态和一定的周期性. 与传统的时间序列分析方法相比, 基于深度学习的方法更能捕捉数据的深层特性, 对具有复杂非线性的时间序列有较好的建模效果. 为了在神经网络中显式地建模时间序列数据的周期性和趋势性, 本文在循环神经网络的基础上引入了周期损失和趋势损失, 建立了基于周期性建模和多任务学习的时间序列预测模型. 将模型应用到欧洲能源交易所法国市场的能源市场价格预测中, 结果表明周期损失和趋势损失能够提高神经网络的泛化能力, 并提高预测时间序列趋势的精度. 相似文献
10.
11.
目的 从医学影像中进行肝脏与肿瘤分割是计算机辅助诊断和治疗的重要前提。常见的胸部和腹部扫描成像效果中,图像对比度偏低,边界模糊,需要医生丰富的临床解剖学知识才能准确地分割,所以精确的自动分割是一个极大的挑战。本文结合深度学习与医学影像组学,提出一种肝脏肿瘤CT(computed tomography)分割方法。方法 首先建立一个级联的2D图像端到端分割模型对肝脏和肿瘤同时进行分割,分割模型采用U-Net深度网络框架,在编码器与解码器内部模块以及编码器与解码器层次之间进行密集连接,这种多样化的特征融合可以获取更准确的全局位置特征和更丰富的局部细节纹理特征;同时融入子像素卷积与注意力机制,有利于分割出更加微小的肿瘤区域;接着生成两个用于后处理的学习模型,一个基于影像组学的分类模型用于假阳性肿瘤的去除;另一个基于3D体素块的分类模型用于分割边缘的细化。结果 实验数据来自某医院影像科300个肝癌病例CT,每个序列中的肝脏与肿瘤都是由10年以上的医学专家进行分割标注。对数据进行5倍交叉验证,敏感度(sensitivity)、命中率(positive predicted value)和戴斯系数(Dice coefficient)在验证结果中的平均值分别达到0.87±0.03、0.91±0.03和0.86±0.05,相比于性能第2的模型分别提高了0.03、0.02和0.04。结论 肝脏肿瘤CT的精确分割可以形成有价值的术前预判、术中监测和术后评价,有助于制定完善的手术治疗方案,提高肝脏肿瘤手术的成功率,且该方法不局限于肝脏肿瘤的分割,同样也适用于其他医学影像组织器官与肿瘤的分割。 相似文献
12.
为提高PM2.5长期预测精度,以空气污染物与气象因素作为影响因子,提出一种基于深度学习的TSMN(time series memory network)预测模型.该模型由两个组件构成,本地记忆组件利用外部记忆方式提高模型长程记忆能力,并与多站点空间关系建模的邻域组件协同从时空角度完成PM2.5长期预测.通过使用不同评价指标将TSMN模型与多种模型进行对比,其中与性能较优的CNN-LSTM模型相比,该模型的RMSE、MAE分别下降5.2%、5.7%,R2提升7.5%.实验结果表明TSMN模型能够有效提高PM2.5浓度的长期预测精度. 相似文献
13.
针对多元混沌时间序列具有强非线性, 难以建立数学模型进行准确预测的问题, 本文提出一种加权极端学习机预测算法. 首先对多元混沌时间序列进行相空间重构, 并根据相空间中输入数据对预测误差的影响施加不同的权重. 然后, 提出一种支持向量极端学习机预测模型, 具有支持向量机的核映射表达能力以及极端学习机的一步快速训练能力, 因此训练简便且具有较好的泛化性能. 所提算法具有和训练样本三次方成正比的计算复杂度, 因此适用于10^2~10^3样本规模的平稳时间序列. 基于Lorenz混沌时间序列和年太阳黑子和黄河年径流混沌时间序列预测的仿真结果证明所提算法的有效性. 相似文献
14.
Time series prediction for higher future horizons is of great importance and has increasingly aroused interest among both scholars and practitioners. Compared to one-step-ahead prediction, multi-step-ahead prediction encounters higher dose of uncertainty arising from various facets, including accumulation of errors and lack of information. Many existing studies draw attention to the former issue, while relatively overlook the latter one. Inspired by this discovery, a new multi-task learning algorithm, called the MultiTL-KELM algorithm for short, is proposed for multi-step-ahead time series prediction in this work, where the long-ago data is utilized to provide more information for the current prediction task. The time-varying quality of time-series data usually gives rise to a wide variability between data over long time span, making it difficult to ensure the assumption of identical distribution. How to make the most of, rather than discard the abundant old data, and transfer more useful knowledge to current prediction is one of the main concerns of our proposed MultiTL-KELM algorithm. Besides, unlike typical iterated or direct strategies, MultiTL-KELM regards predictions of different horizons as different tasks. Knowledge from one task can benefit others, enabling it to explore the relatedness among horizons. Based upon its design scheme, MultiTL-KELM alleviates the accumulation error problem of iterated strategy and the time consuming of direct strategies. The proposed MultiTL-KELM algorithm has been compared with several other state-of-the-art algorithms, and its effectiveness has been numerically confirmed by the experiments we conducted on four synthetic and two real-world benchmark time series datasets. 相似文献
15.
对城市中发生的事件进行有效预测,可以为政府避免、控制或减轻相关的社会风险提供决策支撑.首先,提出基于积分求导法的条件强度函数式,提高序列预测精度;其次,构建基于递归神经网络和累积危险函数的时间点过程模型,通过递归神经网络捕获历史事件的非线性依赖关系,利用全连接网络获得累积危险函数;最后,选择具有代表性的合成数据集和真实... 相似文献
16.
分布式拒绝服务(DDoS)攻击是网络环境中最具破坏力的攻击方式之一,现有基于机器学习的攻击检测方法往往直接将某时刻的特征值代入分类器进行分类,没有考虑相邻时刻特征之间的联系,因而导致误报率和漏报率较高。提出一种基于隐马尔科夫模型HMM时间序列预测和混沌模型的DDoS攻击检测方法。针对大规模攻击网络流量的突发性,定义网络流量加权特征NTWF和网络流平均速率NFAR二元组来描述网络流量的特点;然后采用层次聚类算法对训练集进行分类,以获取隐层状态HLS序列,利用NTWF序列和HLS序列对HMM进行监督学习获得状态转移矩阵和混淆矩阵,以预测NTWF序列;最后通过混沌模型分析NTWF序列的预测误差,结合基于NFAR的规则来识别攻击行为。实验结果表明,与同类方法相比,所提方法具有较低的误报率和漏报率。 相似文献
17.
18.
近年来大规模开放在线课程获得了较为广泛的关注。由于学习者学习方式不合理使得学习兴趣下降,学习效果不佳,MOOCs辍学率很高,针对这一问题,从学习者学习活动日志中自动抽取一段时间内连续特征,以学习者行为特征为自变量,建立MOOCs辍学预测模型。在KDD Cup 2015数据集上的实验表明,使用基于卷积神经网络的长短期记忆CNN_LSTM辍学预测模型,能够帮助MOOCs课程教师和设计者追踪课程学习者在不同时间步长的学习状态,从而动态监控不同阶段的辍学行为,模型的预测准确率高,这将为教师改进教学方法提供更合理的指导和建议。 相似文献
19.
时间序列数据通常是指一系列带有时间间隔的实值型数据,广泛存在于煤矿、金融和医疗等领域。为解决现有时间序列数据分类问题中存在的含有大量噪声、预测精度低和泛化性能差的问题,提出了一种基于正则化极限学习机(RELM)的时间序列数据加权集成分类方法。首先,针对时间序列数据中所含有的噪声,利用小波包变换方法对时间序列数据进行去噪处理。其次,针对时间序列数据分类方法预测精度低、泛化性能较差的问题,提出了一种基于RELM的加权集成分类方法。该方法通过训练正则化极限学习机(RELM)隐藏层节点数量的方法,有效选取RELM基分类器;通过粒子群优化(PSO)算法,对RELM基分类器的权值进行优化;实现对时间序列数据的加权集成分类。实验结果表明,该分类方法能够对时间序列数据进行有效分类,并提升了分类精度。 相似文献
20.
时间序列一步预测方法* 总被引:2,自引:0,他引:2
为了改善时间序列预测的性能,提出一种时间序列一步预测分析方法。首先将一个时间序列分解为总体趋势和个体波动两个序列,然后分别对这两个序列进行预测分析,再将结果合成得到最终的预测结果。对于总体趋势序列利用加权滤波算法进行分析,而对于个体波动序列则先进行混沌特性分析,再结合混沌预测分析方法对其进行预测。利用混沌优化方法动态地调节预测网络的参数,逐渐提高网络的预测精度。利用该方法分别对混沌序列、实际股票价格等序列进行了仿真预测分析,仿真结果表明,该方法具有良好的预测效果。 相似文献