首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
多元时间序列包含丰富的变量,且变量间存在着相关性,相互影响,可能会降低某一变量的预测精度.为此,本文提出了一种基于RNN和CNN的混合模型.模型利用互信息法进行特征选择,通过融合CNN的抽象特征提取以及GRU的时序信息提取来预测未来7个单位时刻的数据.实验表明,模型的预测效果优于LSTM等模型.此外,为了检验所构建的模...  相似文献   

2.
针对类间分布不平衡的时间序列数据的异常检测问题,提出了一种基于深度卷积神经网络的检测方法.首先采用抽样法对不平衡时间序列数据进行预处理;其次,将处理后的时间序列数据转换为尺度一致、时长一致的片段;最后将数据送入具有4层隐藏层结构的卷积神经网络模型中进行异常检测.实验结果表明,所提方法弥补了现存的检测技术由于忽略数据分布的偏斜性而造成的少数类检测精度低的缺点,并通过与现有的时间序列分类方法的比较,验证了所提方法的高效性.  相似文献   

3.
卫晓旭  王晓凯  朱涛  龚真 《计算机仿真》2021,(5):467-471,483
为了有效地控制和治理大气污染,合理预测污染物在大气中浓度,对于提前采取预防措施、有效管理污染活动发挥着重大作用.针对多变量非线性、复杂的时间序列,以及多因素影响预测浓度的问题,提出一种基于多变量分解的非平稳时间序列深度预测方法.首先,确定主要预测变量,并对主变量进行STL(Seasonal and Trend deco...  相似文献   

4.
随着数据采集技术的蓬勃发展,各个领域的时空数据不断累积,迫切需要探索高效的时空数据预测方法.深度学习是一种基于人工神经网络的机器学习方法,能有效地处理大规模的复杂数据,因而研究基于深度学习的时空序列预测方法具有十分重要的意义.在这一背景下,针对已有的预测方法进行归纳和总结,首先回顾了深度学习在时空序列预测中的应用背景和...  相似文献   

5.
时间序列在现实生活中具有广泛的用途,使用时间序列预测模型能够预估序列的未来变化趋势,为决策提供支撑.对于多变量时间序列的预测研究,已经提出了很多模型,但已有方法存在如下问题:不能同时考虑时间序列本身和协变量的信息;忽略了多变量时间序列中的全局信息;不能对预测结果进行解释.针对这些问题,本文提出了一个基于深度学习的多变量时间序列预测模型TEDGER,可以提取隐藏在单个时间序列中的序列模式和隐藏在多变量时间序列中的全局特征,并将序列模式和全局特征进行融合,通过残差预测的方式实现时间序列的预测.本文所提模型在真实的时间序列数据集上进行了实验评估.结果表明,本文提出的模型在预测准确度上超越了其他基准模型,同时模型拥有一定的可解释性.  相似文献   

6.
时间序列预测方法综述   总被引:1,自引:0,他引:1  
时间序列是按照时间排序的一组随机变量,它通常是在相等间隔的时间段内依照给定的采样率对某种潜在过程进行观测的结果。时间序列数据本质上反映的是某个或者某些随机变量随时间不断变化的趋势,而时间序列预测方法的核心就是从数据中挖掘出这种规律,并利用其对将来的数据做出估计。针对时间序列预测方法,着重介绍了传统的时间序列预测方法、基于机器学习的时间序列预测方法和基于参数模型的在线时间序列预测方法,并对未来的研究方向进行了进一步的展望。  相似文献   

7.
精确的电力负荷预测对智能电网等基础设施的高效管理至关重要.本文引入了几种深度学习网络:RNN、LSTM、DNN,对某地某家庭短期内实际电力负荷值的消耗进行仿真预测,实验结果表明,RNN、LSTM和DNN模型下的预测值与真实值的大致趋势均一致,模型效果差距不大,RNN略好于DNN,DNN略好于LSTM,整体仍有优化空间.  相似文献   

8.
一种基于时间序列模型的风速预测方法   总被引:1,自引:0,他引:1  
根据风速数据特点,提出一种基于时间序列的风速预测模型,对模型中的相关参数进行确定。实验结果表明,对风速进行提前1小时预测时,预测风速与实际风速较吻合,误差仅为10%,从而为大气污染物浓度确定提供有效依据。  相似文献   

9.
时间序列数据广泛存在于人类的生产生活中, 通常具有复杂的非线性动态和一定的周期性. 与传统的时间序列分析方法相比, 基于深度学习的方法更能捕捉数据的深层特性, 对具有复杂非线性的时间序列有较好的建模效果. 为了在神经网络中显式地建模时间序列数据的周期性和趋势性, 本文在循环神经网络的基础上引入了周期损失和趋势损失, 建立了基于周期性建模和多任务学习的时间序列预测模型. 将模型应用到欧洲能源交易所法国市场的能源市场价格预测中, 结果表明周期损失和趋势损失能够提高神经网络的泛化能力, 并提高预测时间序列趋势的精度.  相似文献   

10.
时间序列数据广泛存在于我们的生活中,吸引了越来越多的学者对其进行深入的研究.时间序列分类是时间序列的一个重要研究领域,目前已有上百种分类算法被提出.这些方法大致分为基于距离的方法、基于特征的方法以及基于深度学习的方法.前两类方法需要手动处理特征和人为选择分类器,而大多数的深度学习方法属于端到端的方法,并且在时间序列分类...  相似文献   

11.
对于具有长、短期的时间关联性、非线性和非平稳性等特点的时序数据,传统时序预测模型对此类数据的预测效果不佳.为进一步提高时序预测模型的准确率和效率,考虑时域卷积提取时间特征的有效性,以及残差结构加快模型收敛的优越性,同时考虑注意力机制对参数的强化作用,提出了一种融合时域卷积、残差结构和注意力机制的时序预测模型(Atten...  相似文献   

12.
目的 从医学影像中进行肝脏与肿瘤分割是计算机辅助诊断和治疗的重要前提。常见的胸部和腹部扫描成像效果中,图像对比度偏低,边界模糊,需要医生丰富的临床解剖学知识才能准确地分割,所以精确的自动分割是一个极大的挑战。本文结合深度学习与医学影像组学,提出一种肝脏肿瘤CT(computed tomography)分割方法。方法 首先建立一个级联的2D图像端到端分割模型对肝脏和肿瘤同时进行分割,分割模型采用U-Net深度网络框架,在编码器与解码器内部模块以及编码器与解码器层次之间进行密集连接,这种多样化的特征融合可以获取更准确的全局位置特征和更丰富的局部细节纹理特征;同时融入子像素卷积与注意力机制,有利于分割出更加微小的肿瘤区域;接着生成两个用于后处理的学习模型,一个基于影像组学的分类模型用于假阳性肿瘤的去除;另一个基于3D体素块的分类模型用于分割边缘的细化。结果 实验数据来自某医院影像科300个肝癌病例CT,每个序列中的肝脏与肿瘤都是由10年以上的医学专家进行分割标注。对数据进行5倍交叉验证,敏感度(sensitivity)、命中率(positive predicted value)和戴斯系数(Dice coefficient)在验证结果中的平均值分别达到0.87±0.03、0.91±0.03和0.86±0.05,相比于性能第2的模型分别提高了0.03、0.02和0.04。结论 肝脏肿瘤CT的精确分割可以形成有价值的术前预判、术中监测和术后评价,有助于制定完善的手术治疗方案,提高肝脏肿瘤手术的成功率,且该方法不局限于肝脏肿瘤的分割,同样也适用于其他医学影像组织器官与肿瘤的分割。  相似文献   

13.
为预防公共场所因吸烟而引发的安全事故,在YOLOv3框架的基础上提出了改进的吸烟检测算法。首先针对传统上采样操作丢失像素信息等问题,设计出一种卷积-转置卷积模块进行替换;在特征融合部分加入坐标注意力机制,使网络更好关注小目标;使用改进的k-means++优化先验框;最后将GIoU替换IoU作为算法的损失函数,进一步提高检测精度。此外,构建了一个多场景的抽烟数据集,并对数据集进行数据增强与扩充。实验结果表明改进后算法较原算法在AP@0.5和AP@0.5:0.95上分别提高5.58%和3.34%,FPS降低3点左右。  相似文献   

14.
    
Temporal action proposal generation aims to output the starting and ending times of each potential action for long videos and often suffers from high computation cost. To address the issue, we propose a new temporal convolution network called Multipath Temporal ConvNet (MTCN). In our work, one novel high performance ring parallel architecture based is further introduced into temporal action proposal generation in order to respond to the requirements of large memory occupation and a large number of videos. Remarkably, the total data transmission is reduced by adding a connection between multiplecomputing load in the newly developed architecture. Compared to the traditional Parameter Server architecture, our parallel architecture has higher efficiency on temporal action detection tasks with multiple GPUs. We conduct experiments on ActivityNet-1.3 and THUMOS14, where our method outperformsother state-of-art temporal action detection methods with high recall and high temporal precision. In addition, a time metric is further proposed here to evaluate the speed performancein the distributed training process.  相似文献   

15.
在目标跟踪算法中深度网络可以对大量图像进行训练和表示,但是对于特定的跟踪对象,离线训练不仅费时,而且在对大量图像进行学习时,其表示和识别能力效果不佳。基于以上问题提出有模板更新的卷积网络跟踪算法,可以在没有离线训练的大量数据时,也能够利用实现强大的目标跟踪能力。在目标跟踪中,从目标周围区域提取一组归一化的局部小区域块作为新的滤波器,围绕目标定义下一帧中的一组特征映射来提取自适应滤波器周围目标,对随后帧提取的归一化样本进行卷积操作生成一组特征图;利用这些特征图获取每个滤波器和目标的局部强度衍射图样之间的相似性,然后对其局部结构信息进行编码;最后,使用来自全局表示的特征图保存该目标的内部几何设计,再通过软收缩方法去噪抑制噪声值,使其低于自适应阈值,生成目标的稀疏表示。有模板更新改进的CNT算法能稳定地跟踪目标,不会发生严重漂移,具有优于传统CNT的良好跟踪效果。  相似文献   

16.
针对无人机航拍图像中目标场景复杂、小目标多、遮挡严重的问题,提出了一种融合目标遮挡信息的改进DDETR(deformable DETR)的无人机目标检测算法.提出模型用Swin Transformer代替DDETR模型中残差网络来获得更丰富的多层次语义特征;增加DDETR模型对低层次特征的使用来提高对中小目标的检测效果;利用提出的遮挡程度估计模块来辅助模型解决遮挡问题,使模型能更好地检测出遮挡严重的目标.在VisDrone数据集上达到32.3%的平均准确度均值(mean average precision,AP),比标准DDETR模型AP值提高了3.3个百分点,与主流无人机航拍图像目标检测方法相比,达到了当前先进水平.  相似文献   

17.
自动驾驶技术的快速发展,导致对交通标志检测技术的要求日益提高.为解决YOLOv7算法在识别小目标时误检、漏检等问题,本文提出一种基于注意力机制的交通标志检测模型YOLOv7-PC.首先通过K-means++聚类算法对交通标志数据集进行聚类,获得适用于检测交通标志的锚框;其次在YOLOv7主干特征提取网络中引入坐标注意力机制,将交通标志的横向和纵向信息嵌入到通道中,使生成的特征信息具有交通标志的坐标信息,加强有效特征的提取;最后在加强特征提取网络中引入空洞空间金字塔池化,捕获交通标志多尺度上下文信息,在保证交通标志小目标分辨率的同时,进一步扩大卷积的感受野.在中国交通标志检测数据集(CCTSDB)上的实验表明,本文算法增强了识别小目标的能力,相较于YOLOv7模型,本文算法的m AP、召回率平均分别提高了5.22%、9.01%,是一种有效的交通标志检测算法.  相似文献   

18.
针对深度学习图像去噪算法存在网络过深导致细节丢失的问题,提出一种双通道扩张卷积注意力网络CEANet。拼接信息保留模块将每一层的输出特征图融合,弥补卷积过程中丢失的图像细节特征进行密集学习;扩张卷积可以在去噪性能和效率之间进行权衡,用更少的参数获取更多的信息,增强模型对噪声图像的表示能力,基于扩张卷积的稀疏模块通过扩大感受野获得重要的结构信息和边缘特征,恢复复杂噪声图像的细节;基于注意力机制的特征增强模块通过全局特征和局部特征进行融合,进一步指导网络去噪。实验结果表明,在高斯白噪声等级为25和50时,CEANet都获得了较高的峰值信噪比均值和结构相似性均值,能够更高效地捕获图像细节信息,在边缘保持和噪声抑制方面,具有较好的性能。相关实验证明了该算法进行图像去噪的有效性。  相似文献   

19.
现阶段雷达目标检测识别主要依赖人工算法提取目标的特征,难点在于环境自适应能力弱,高强度杂波背景下难以有效检测到目标;针对上述问题,结合深度学习在图像识别等领域表现出的强大的学习表示能力,提出基于堆叠双向长短期记忆网络的雷达目标识别方法;网络模型以雷达多普勒维的回波数据构建数据集,采用双向LSTM提取雷达回波数据在时间序列上的正向和逆向信息,通过RMSProp优化算法对神经网络参数迭代训练,实现了对无人机这种低空慢速小目标的有效识别;实验结果表明,基于堆叠双向LSTM的雷达目标识别方法优于传统的SVM分类算法和卷积神经网络分类算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号