首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolved organic matter (DOM) in surface waters affects the fate and environmental effects of trace metals. We measured variability in the Cd, Cu, Ni, and Zn affinity of 23 DOM samples isolated by reverse osmosis from freshwaters in natural, agricultural, and urban areas. Affinities at uniform pH and ionic composition were assayed at low, environmentally relevant free Cd, Cu, Ni, and Zn activities. The C-normalized metal binding of DOM varied 4-fold (Cu) or about 10-fold (Cd, Ni, Zn) among samples. The dissolved organic carbon concentration ranged only 9-fold in the waters, illustrating that DOM quality is an equally important parameter for metal complexation as DOM quantity. The UV-absorbance of DOM explained metal affinity only for waters receiving few urban inputs, indicating that in those waters, aromatic humic substances are the dominant metal chelators. Larger metal affinities were found for DOM from waters with urban inputs. Aminopolycarboxylate ligands (mainly EDTA) were detected at concentrations up to 0.14 μM and partly explained the larger metal affinity. Nickel concentrations in these surface waters are strongly related to EDTA concentrations (R2=0.96) and this is underpinned by speciation calculations. It is concluded that metal complexation in waters with anthropogenic discharges is larger than that estimated with models that only take into account binding on humic substances.  相似文献   

2.
Shewanella putrefaciens, a heterotrophic member of the gamma-proteobacteria is capable of respiring anaerobically on Fe(III) as the sole terminal electron acceptor (TEA). Recent genetic and biochemical studies have indicated that anaerobic Fe(III) respiration by S. putrefaciens requires outer-membrane targeted secretion of respiration-linked Fe(III) reductases. Thus, the availability of Fe(III) to S. putrefaciens may be governed by equilibrium chemical speciation both in the solution phase and at the bacterial cell-aqueous or cell-mineral interface. In the present study, effects of Fe(III) speciation on rates of bacterial Fe(III) reduction have been systematically examined by cultivating S. putrefaciens anaerobically on a suite of Fe(III)-organic complexes as the sole TEA. The suite of Fe(III)-organic complexes spans the range of stability constants normally encountered in natural water systems and includes Fe(III) complexed to citrate, 5-sulfosalicylate, NTA, salicylate, tiron, and EDTA. Rates of bacterial Fe(III) reduction in the presence of dissolved chelating agents correlate with the thermodynamic stability constants of the Fe(III)-organic complexes, implying that chemical speciation governs Fe(III) bioavailability. Equilibrium Fe(III) sorption experiments measured the reversible coordination of Fe(III) with S. putrefaciens as a function of cell/Fe(III) concentration, time, and activity of competing chelating agents. Results show that S. putrefaciens readily sorbs dissolved Fe(III) but that adsorption is restricted by the presence of strong Fe(III)-chelating agents. Our results indicate that dissimilatory Fe(III) reduction by S. putrefaciens is controlled by equilibrium competition for Fe(III) between dissolved organic ligands and strongly sorbing functional groups on the cell surface.  相似文献   

3.
The relationship between the overall octanol-water partition coefficient of a mixture of related chemical species, D(ow), and the octanol-water partition coefficients of its components, (K(ow))i, is explored. One form of the relationship (model 1) is generally applicable but relies on definition of aqueous phase speciation at equilibrium with octanol. An alternative form of the relationship (model 2) circumvents this requirement but assumes that related species are conserved during the partitioning process and is explicitly dependent on the water to octanol volume ratio, Vw/Vo. The potential applications and limitations of each model for defining the hydrophobic characteristics of chemical species in natural waters are examined in the light of experimental partition results for dissolved Cu and Pb in river waters. Given the general difficulties in accurate speciation modeling of trace metals in natural samples, model 1 was only able to estimate a K(ow) (typically in the range 0.03-0.3) for a computed organically complexed fraction of metal (generally > 90%). However, by conducting partition "isotherms" as a function of Vw/Vo and, because of the buffering capacity of natural waters, by treating a sample as two distinct hydrophilic and hydrophobic "pools", model 2 was able to estimate both the abundance and K(ow) of a more specific group of species. Parameter values derived from the latter approach indicated that river waters comprise a relatively small pool (about 4-20%) of metal whose octanol-water partitioning is in the region of 15-150. Given that the free ion activity of strongly binding metals in natural waters is extremely small, the hydrophobic fraction may, in many cases, representthe most biologically and environmentally significant component of metal. Accordingly, the experimental and modeling approaches described herein could be of great significance to an improved understanding of the fate and impacts of trace metals in the aquatic environment.  相似文献   

4.
A new approach was developed to account for the contribution of indirect photolysis of pesticides and pharmaceuticals in which laboratory test conditions are similar to those prevalent in the aqueous environment. Rates of photolysis as a function of water composition were investigated for several aquatic contaminants. Using the laboratory-based test system, PhotoFate, the dependence of phototransformation rates on concentrations of natural water constituents that are radical producers and scavengers (nitrate, colored dissolved organic matter, bicarbonate) was studied. Mean half-lives of the model compounds in the presence of water constituents were compared to their direct photolysis half-lives to assess the contribution of photosensitized reactions to their fate in surface waters. Reactions mediated by .OH were predominant in waters with high nitrate concentrations. Colored dissolved organic matter (cDOM) acted mainly as a radiation filter and had a more important role in scavenging radicals than in their production. However, in low nitrate waters, the contribution of cDOM-derived reactive intermediates to the degradation of parent compounds became more apparent  相似文献   

5.
机体内存在的金属离子发挥着至关重要的作用,金属元素的缺乏会导致不良症状的产生。目前市场上的金属元素补充剂价格较高或对胃肠道具有一定的刺激性,因此急需高效廉价的新型补充剂来应对此类现状。其中,由蛋白质水解产生的具有金属离子螯合性的多肽具有深远的研究意义。多肽金属离子螯合物是蛋白质水解产生的小分子多肽的羧基、磷酸基团、酰胺基团以及氨基酸等与金属离子通过配位共价结合或者吸附结合后产生的活性产物,具有生物利用率高、安全性高、生物活性高等优点。本文综述了国内外金属离子螯合肽的制备、肽金属螯合物的结构表征、酶解物的分离纯化、螯合肽的生物利用率及螯合机制的相关研究,并对目前现存在的问题进行总结,以期对矿物质元素补充剂的研究与开发提供新思路。  相似文献   

6.
Metal toxicity is not related to the total but rather to the free or labile metal ion concentration. One of the techniques that can be used to measure several free metal ion concentrations simultaneously is the Donnan Membrane Technique (DMT) in combination with the inductively coupled plasma-mass spectrometer (ICP-MS). However, free metal ion concentrations in natural waters are commonly below the detection limit of ICP-MS. We decreased the detection limit by making use of a ligand, and we developed a field DMT cell that can be applied in situ in natural waters. A kinetic approach can be used to calculate free metal ion concentrations when the equilibrium time becomes too large. The field DMT measured in situ in natural waters a free metal ion concentration ranging from 0.015% (Cu) to 13% (Zn) of a total metal concentration ranging from 0.06 nM (Cd) to 237 nM (Zn). The free metal ion concentrations were difficult to predict using an equilibrium speciation model, probably due to the uncertainty in the nature of the dissolved organic matter or the presence of other reactive colloids. It is shown that DMT can follow changes in the free metal ion concentration on times scales less than a day under certain conditions.  相似文献   

7.
8.
We investigated ciprofloxacin (a fluoroquinolone antibiotic) speciation as a function of pH in aqueous solution and in the presence of dissolved ferric ions and goethite using ATR-FTIR and UV-vis spectroscopy. The presence of dissolved and surface bound ferric species induced the deprotonation of the ciprofloxacin carboxylic acid group at pH < pKa1. The resultant ciprofloxacin zwitterions appeared to interact via both carboxylate oxygens to form bidentate chelate and bridging bidentate complexes within colloidal iron oxide-ciprofloxacin precipitates and bidentate chelates on the goethite surface. However, the structure of the aqueous ferric-ciprofloxacin complexes remains unclear. Our evidence for bidentate chelates (involving only the carboxylate oxygens) on the goethite surface was distinct from previous IR studies of fluoroquinolone sorption to metal oxides that have proposed surface complexes involving both the keto and the carboxylate groups. We find that the distinct ciprofloxacin surface complex proposed at the goethite-water interface may be a result of differences in metal oxide mineralogy or assignment of the carboxylate antisymmetric stretch in the metal oxide-fluoroquinolone spectra.  相似文献   

9.
Speciation affects trace metal bioavailability. One model used to describe the importance of speciation is the biotic ligand model (BLM), wherein the competition of inorganic and organic ligands with a biotic ligand for free-ion trace metal determines the ultimate metal availability to biota. This and similar models require natural ligand concentrations and conditional stability constants as input parameters. In concept, the BLM is itself an analogue of some analytical approaches to the determination of trace metal speciation. A notable example is competitive ligand equilibration/cathodic stripping voltammetry, which employs an artificial ligand for comparative assessment of natural ligand concentrations and discrete conditional stability constants (i.e., BLM parameters) in a natural sample. Here, we report a new numerical approach to voltammetric speciation and parameter estimation that employs multiple analytical windows and a two-step optimization process, simultaneously generating both parameters and a complete suite of corresponding species concentrations. This approach is more powerful, systematic, and flexible than those previously reported.  相似文献   

10.
The metal chelating peptides from sesame protein hydrolysates (SPH), treated by papain, alcalase and trypsin, respectively, were investigated. The hydrolysates treated by trypsin had the highest metal chelating ability. The metal chelating peptides were isolated from the trypsin hydrolysates using immobilized metal affinity chromatography (IMAC-Zn2+). Further, six zinc-chelating peptides were identified with reversed phase (RP)-HPLC and mass spectrometry (LC–MS/MS). Three of these metal-chelating peptides, Ser-Met, Leu-Ala-Asn and Asn-Cys-Ser, were synthesized and the metal-chelating ability of peptides was measured. The Asn-Cys-Ser peptide showed the highest zinc and iron chelating ability, which was even higher than reduced glutathione (GSH). The results confirm that the zinc or iron chelating activity of these peptides, and provide further support to its feasibility as natural metal chelating agents from sesame protein.  相似文献   

11.
Removal of heavy metals from mine waters by natural zeolites   总被引:1,自引:0,他引:1  
In this study, we investigated the removal of Fe, Pb, Cd, and Zn from synthetic mine waters by a natural zeolite. The emphasis was given to the zeolite's behavior toward a few cations in competition with each other. Pb was removed efficiently from neutral as well as from acidic solutions, whereas the uptake of Zn and Cd decreased with low pH and high iron concentrations. With increasing Ca concentrations in solution, elimination of Zn and Cd became poorer while removal of Pb remained virtually unchanged. The zeolite was stable in acidic solutions. Disintegration was only observed below pH 2.0. Forward- and back-titration of synthetic acidic mine water were carried out in the presence and absence of zeolite to simulate the effects of a pH increase by addition of neutralizing agents and a re-acidification which can be caused by subsequent mixing with acidic water. The pH increase during neutralization causes precipitation of hydrous ferric oxides and decreased dissolved metal concentrations. Zeolite addition further diminished Pb concentrations but did not have an effect on Zn and Cd concentrations in solution. During re-acidification of the solution, remobilization of Pb was weaker in the presence than in the absence of zeolite. No substantial differences were observed for Fe, Cd, and Zn immobilization. The immobilization of the metals during pH increase and the subsequent remobilization caused by re-acidification can be well described by a geochemical equilibrium speciation model that accounts for metal complexation at hydrous ferric oxides, for ion exchange on the zeolite surfaces, as well as for dissolution and precipitation processes.  相似文献   

12.
Acidity (pH) has been realized to be the most important soil characteristic that modulates bioavailability of heavy metals by affecting both the chemical speciation of metals in soil and the metal binding to the active sites on biota. In this work, we show that besides soil pH, metal bioavailability also depends to a certain extent on the type of soil. A better understanding of the role of soil type in regulating metal availability can be achieved with the analysis of soil composition and with calculations using chemical speciation models. Results of pot experiments, in which three different soils were spiked with nickel, show that the EC50 of total nickel in decreasing the biomass production of oats varies widely (0.7-22.5 mmol kg(-1) soil, more than 30 times). pH (4.7-7.0) is the most important factor, explaining up to a factor of 14 difference of nickel bioavailability in the soils. The remaining variation is caused by other differences in soil composition (soil type). The bioavailability and toxicity of nickel in the organic matter-rich soil studied is less than half of that in the sandy and clay soil studied at a similar pH. The chemical calculations using a multi-surface speciation model show that soil organic matter binds Ni much stronger than clay silicates and iron (hydr)oxides within the acidic pH range, which supports the experimental findings. In all three soils, the EC50 of Ni expressed in terms of Ni in 0.01 M CaCl2 soil extraction is rather stable (24-58 microM), suggesting the possibility to use this extraction as an estimation of metal availability in soil.  相似文献   

13.
本文研究并优化了以美国红鱼(Sciaenops ocellatus)鱼鳞为原料制备多肽及合成多肽金属螯合物的工艺条件.以美国红鱼鱼鳞为原料制备多肽,采用凝胶色谱分析多肽的分子量;利用水体系法合成多肽金属螯合物并采用EDTA络合滴定法测定金属螯合率;设计并利用L9(34)正交试验优化了多肽金属螯合物工艺条件;利用红外光谱...  相似文献   

14.
Organic UV filter chemicals are the active ingredients in personal care products designed to protect the skin from UV radiation, and hundreds of tons are estimated to be produced annually. Despite their entrance into the aquatic environment by both direct and indirect routes and their detection in surface waters and fish, little is known about their environmental fate. UV filter chemicals are designed to be photostable, but some undergo transformation upon exposure to UV light. Octyl methoxycinnamate (OMC), a commonly used UV filter chemical, degrades rapidly by direct photolysis; previous studies have focused on its photoisomerization, and a few investigators have reported the formation of cyclodimers. Here, we present the kinetics and quantum efficiency of the direct photolysis of OMC and confirm that dimerization occurs as a result of direct photolysis in aqueous solution. Likely identities of the dimers are offered based on comparison to reported results for other cinnamate derivatives. We have identified additional products of direct photolysis that have not been previously reported and investigated their photostability, as well as the mechanism of product formation. There is also some evidence of indirect photolysis in the presence of dissolved natural organic matter.  相似文献   

15.
The fate of Zn and other sorbed heavy metals during microbial reduction of iron oxides is different when comparing synthetic Fe-(hydr)oxides and natural sediments undergoing a similar degree of iron reduction. Batch experiments with the iron-reducing organism Shewanella putrefaciens were conducted to examine the effects of an aqueous complexant (nitrilotriacetic acid or NTA), two solid-phase complexants (kaolinite and montmorillonite), an electron carrier (anthraquinone disulfonic acid or AQDS), and a humic acid on the speciation of Zn during microbial reduction of synthetic goethite. Compared to systems containing only goethite and Zn, microbial Fe(III) reduction in the presence of clay resulted in up to a 50% reduction in Zn immobilization (insoluble in a 2 h 0.5 M HCl extraction) without affecting Fe(II) production. NTA (3 mM) increased Fe(II) production 2-fold and resulted in recovery of nearly 75% of Zn in the aqueous fraction. AQDS (50 microM) resulted in a 12.5% decrease in Fe(II) production and a 44% reduction in Zn immobilization. Humic acid additions resulted in up to a 25% decrease in Fe(II) production and 51% decrease in Zn immobilization. The results suggest that all the components examined here as either complexing agents or electron shuttles reduce the degree of Zn immobilization by limiting the availability of Zn for incorporation into newly formed biogenic minerals. These results have implications for the remediation of heavy metals in a variety of natural sediments.  相似文献   

16.
The hydrophobicities of dissolved Al, Cu, Mn, and Pb have been determined in various contaminated natural water samples by 1-octanol extraction and C18 column retention. Octanol extraction varied among the metals studied and between the environments sampled but, in general, was greatest for Pb, whose conditional octanol-water partition coefficient, Dow, exceeded unit value in some samples. In most cases, metal partition into octanol either increased with increasing pH or exhibited a maximum under near-neutral conditions. Although the order and pH-dependence of metal retention by the C18 columns was consistent with these observations, the extent of retention was generally greater than the extent of metal extraction by octanol, possibly because of interferences effected by the C18 column matrix. Speciation calculations and results of controlled experiments employing metals in the presence of model ligands suggest that metals may become hydrophobic either by neutralizing relatively hydrophilic ligands or by combining with ligands that are intrinsically hydrophobic themselves. Given that octanol solubility affords an upper estimate of lipophilicity, the results of this investigation may have important implications regarding our understanding of metal bioavailability and toxicity in natural waters.  相似文献   

17.
Thallium (TI) is a metal of great toxicological concern and its prevalence in the natural environment has steadily increased as a result of manufacturing and combustion practices. Due to its low natural abundance and increasing demand, TI is the fourth most expensive metal, thus, recovery and reuse could be a profitable endeavor. The hyperaccumulator Iberis intermedia was examined via in vivo micro-X-ray absorption near edge (micro-XANES) and micro-X-ray fluorescence (micro-XRF) spectroscopies to determine the speciation and distribution of TI within leaves of the plant. I. intermedia plants were cultivated under controlled conditions in 0, 10, and 20 mg TI kg(-1) soil leading to a shoot concentration of up to 13 430 mg TI kg(-1) dry weight plant mass during 10 weeks of growth. Live plant leaves were examined by micro-XANES and micro-XRF which determined aqueous TI(I) to be the model species distributed primarily throughout the vascular network. A direct relationship of vein size to TI concentration was observed. The high uptake of TI and high potential biomass of I. intermedia, combined with knowledge of TI speciation and compartmentation within the plant, are discussed in terms of accumulation/tolerance mechanisms, consequences for potential food chain contamination, and phytomining strategies to reclaim TI-contaminated soils, sediments, and waters.  相似文献   

18.
Thioarsenates dominate arsenic speciation in sulfidic geothermal waters, yet little is known about their fate in the environment. At Conch Spring, an alkaline hot spring in Yellowstone National Park, trithioarsenate transforms to arsenate under increasingly oxidizing conditions along the drainage channel, accompanied by an initial increase, then decrease of monothioarsenate and arsenite. On-site incubation tests were conducted using sterile-filtered water with and without addition of filamentous microbial mats from the drainage channel to distinguish the role of abiotic and biotic processes for arsenic species transformation. Abiotically, trithioarsenate was desulfidized to arsenate coupled to sulfide oxidation. Monothioarsenate, however, was inert. Biotic incubations proved that the intermediate accumulation of arsenite in the drainage channel is microbially catalyzed. In the presence of sulfide, microbially enhanced sulfide oxidation coupled to reduction of arsenate to arsenite could simply enhance abiotic desulfidation of trithioarsenate and potentially also monothioarsenate. However, we were also able to show, in sulfide-free medium, direct microbial transformation of monothioarsenate to arsenate. Some arsenite formed intermediately, which was subsequently also microbially oxidized to arsenate. This study is the first evidence for microbially mediated thioarsenate species transformation by (hyper)thermophilic prokaryotes.  相似文献   

19.
Mono-, di-, tri-, and tetrathioarsenate, as well as methylated arsenic oxy- and thioanions, were determined besides arsenite and arsenate in geothermal waters of Yellowstone National Park using anion-exchange chromatography inductively coupled plasma mass spectrometry. Retention time match with synthetic standards, measured S:As ratios, and molecular electrospray mass spectra support the identification. Acidification was unsuitable for arsenic species preservation in sulfidic waters, with HCI addition causing loss of total dissolved arsenic, presumably by precipitation of arsenic-sulfides. Flash-freezing is preferred for the preservation of arsenic species for several weeks. After thawing, samples must be analyzed immediately. Thioarsenates occurred over a pH range of 2.1 to 9.3 in the geothermal waters. They clearly predominated under alkaline conditions (up to 83% of total arsenic), but monothioarsenate also was detected in acidic waters (up to 34%). Kinetic studies along a drainage channel showed the importance of thioarsenates for the fate of arsenic discharged from the sulfidic hot spring. The observed arsenic speciation changes suggest three separate reactions: the transformation of trithioarsenate to arsenite (major initial reaction), the stepwise ligand exchange from tri- via di- and monothioarsenate to arsenate (minor reaction), and the oxidation of arsenite to arsenate, which only becomes quantitatively important after thioarsenates have disappeared.  相似文献   

20.
In sulfidic aquatic systems, metal sulfides can control the mobility and bioavailability of trace metal pollutants such as zinc, mercury, and silver. Nanoparticles of ZnS and other metal sulfides are known to exist in oxic and anoxic waters. However, the processes that lead to their persistence in the aquatic environment are relatively unknown. The objective of this study was to evaluate the importance of dissolved natural organics in stabilizing nanoparticulate ZnS that precipitates under environmentally relevant conditions. Precipitation and growth of ZnS particles were investigated in the presence of dissolved humic acid and low-molecular weight organic acids that are prevalent in sediment porewater. Dynamic light scattering was used to monitor the hydrodynamic diameter of particles precipitating in laboratory solutions. Zn speciation was also measured by filtering the ZnS solutions (< 0.2 microm) and using anodic stripping voltammetry to confirm that Zn was coordinated to sulfide during the precipitation experiments and not to the dissolved organic ligands. X-ray photoelectron spectroscopy and electron microscopy were used to confirm that amorphous particles containing Zn and S were precipitating in the suspensions. Observed growth rates of ZnS particles varied by orders of magnitude, depending on the type and concentration of organic ligand in solution. In the presence of humic acid and thiol-containing ligands (cysteine, glutathione, and thioglycolate), observed growth rates decreased by 1-3 orders of magnitude relative to controls without the ligands. In contrast, growth rates of the particles were consistently within 1 order of magnitude of the ligand-free control when oxygen- and amine-containing ligands (oxalate, serine, and glycolate) were present Furthermore, particle growth rates decreased with an increase in thiol concentration and increased with NaNO3 electrolyte concentration. These studies suggest that specific surface interactions with thiol-containing organics may be one factor that contributes to the persistence of naturally occurring and anthropogenic nanoparticles of ZnS and other metal sulfides in the aquatic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号