首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Carob germ proteins have been shown to have functional properties similar to wheat gluten enabling formulation and production of yeast leavened gluten-free baked goods from a true dough rather than a stiff batter. The purpose of this research was to optimize the production of wheat-free bread containing carob germ flour, corn starch, NaCl, sucrose, hydroxypropyl methylcellulose (HPMC), and H(2)O. A key criterion was to formulate viscoelastic dough similar to wheat dough. To that end, response surface methodology (RSM) was used to determine optimal levels of carob germ flour, H(2)O, and HPMC. Components varied as follows: 4.94%-15.05% for carob germ flour, 0.05%-3.75% HPMC, and 65.25%-83.75% H(2)O (percents are on a flour basis, where carob germ flour in combination with maize starch equals 100%). Sucrose, NaCl, and yeast were held constant at 2%. Bread parameters evaluated were specific volume and crumb hardness, where the largest specific volume and the lowest value for crumb hardness were considered most desirable. The optimum formula as determined by RSM consisted of 7% carob germ flour, 93% maize starch, 2% HPMC, and 80% H(2)O with predicted crumb hardness of ~200 g of force and a specific volume of ~3.5 cm(3)/g. When proof time was optimized, a specific volume of ~5.6 ml/g and crumb hardness value of ~156 g of force was observed. Carob germ flour may be used as an alternative to wheat flour in formulating viscoelastic dough and high quality gluten-free bread. PRACTICAL APPLICATION: Celiac disease affects approximately 1% of the world's population. Sufferers of the disease must consume a gluten-free diet. Currently, gluten-free baked products are made from batters and lack the ability to be made from dough based systems which limits the overall processability and product variety. This research is aimed at the utilization of carob germ protein and its ability to form dough to produce an optimal gluten-free bread formulation. This will help to alleviate problems in processability and product variety associated with gluten-free baked goods.  相似文献   

3.
Common availability of dough improvers permits the production of bread of good quality, but only modifications of the process may be used for the production of natural products. Dough from weak flour, after application of certain treatments, displays poorer baking properties; therefore, in our study, it is proposed to apply slow-speed mixing in two cycles. In the literature, there is a lack of comparisons of results of baking with the straight dough method (one-cycle mixing) with modified methods including the application of two equal cycles of dough mixing and two “incomplete” cycles, the first of which lasts twice as long as the second one [partial two-cycle mixing (PTCM)]. This study involved the determination of the quality properties of bread (loaf volume, specific weight, crust thickness, crumb whiteness, crumb hardness index, and crumb heterogeneity index) under the effect of process modifications, analyzing the effect of dough mixing time and resting time between the mixing cycles. The study included also regression equations describing the physical properties of bread. Based on the tests performed, it was noted that in the case of flour characterized by poor baking quality, the process effectiveness can be enhanced through the application of two incomplete mixing cycles (PTCM), with dough resting time in the range of 10–20 min. This treatment resulted breads with significantly greater loaf volume, lower specific weight, lower whiteness index, and hardness compared to breads baked using the straight dough method. It is not recommended to use two equal duration cycles of dough mixing.  相似文献   

4.
The objective of this work was to assess the effect of emulsifiers, hydrocolloids and enzymes on gluten-free dough rheology and thermal properties and bread quality, while relating dough properties parameters to bread technological quality. Breads were based on rice flour, cassava starch and full-fat active soy flour, with 65% or 75% (flour-starch basis) of water incorporation. Additives used were emulsifiers (diacetyl tartaric acid ester of monoglycerides – DATEM and sodium stearoyl lactylate – SSL), enzymes (glucose oxidase and α-amylase) and hydrocolloids (xanthan gum, carboxymethylcellulose, alginate and carrageenan). Results showed that additive incorporation modified dough behavior, evidenced by different calorimetric and rheological properties. Besides, the electrophoretic pattern of dough extracted proteins changed with glucose oxidase addition. These modifications resulted in breads with different characteristics, such as specific volume, firmness and firming rate, and crumb structure. Nonetheless, they did not necessarily show better quality parameters than the control bread. The control dough displayed good performance for obtaining gluten-free breads of acceptable volume, crumb structure and, principally, with lower hardening rate during storage. Contrary to widespread opinion, this work shows that the presence of additives is not essential for gluten-free bread production. This fact provides new perspectives to the gluten free market at the moment of selecting raw materials and technological parameters, reducing production costs and facilitating gluten free products development.  相似文献   

5.
This study investigated the effect of six fats (margarine, butter, lard-LAR, refined palm oil-RPO, refined palm oil with stearin-RPOS, hydrogenated palm oil-HPO) with different solid fat content (SFC) on gluten-free oat dough and cookie properties. RPOS and HPO had the highest SFC. RPO dough was the softest, whereas HPO was the hardest one. Dough hardness was correlated with SFC (r = 0.87). Dough stickiness was positively correlated with dough hardness (r = 0.92). Dough hardness influenced the breaking force of the cookies (r = 0.79). HPO were the hardest cookies. Oscillatory test revealed that HPO dough was the stiffest as well as presented a higher rigidity compared to the other samples as showed by the creep tests. LAR cookies were the darkest, while HPO were the lightest. SFC of fats is the most important composition parameter which influences thermal, textural and rheological properties of the oat dough.  相似文献   

6.
Sourdoughs were produced from buckwheat, oat, quinoa, sorghum, teff and wheat flour using the heterofermentative lactic acid bacteria Lactobacillus plantarum FST 1.7 and added to a basic bread formulation of flour from the same grain type (20 % addition level). Dough rheology, textural (crumb hardness, specific volume) and structural bread characteristics (crumb porosity, cell volume, brightness) of sourdough-containing breads were compared to non-sourdough-containing breads (control). Changes in protein profiles as analysed with capillary electrophoresis were observed in all sourdoughs. Furthermore, sourdough addition led to decreased dough strength resulting in softer dough. No influences on specific volume and hardness on day of baking were found for gluten-free sourdough breads. The staling rate was reduced in buckwheat (from 8 ± 2 to 6 ± 2 N/day) and teff sourdough bread (13 ± 1 to 10 ± 4 N/day), however, not significantly in comparison with the control breads. On the contrary, in wheat sourdough bread, the staling rate was significantly reduced (2 ± 1 N/day) in comparison with control bread (5 ± 1 N/day). Sourdough addition increased the cell volume significantly in sorghum (+61 %), teff (+92 %) and wheat sourdough breads (+78 %). Therefore, crumb porosity was significantly increased in all gluten-free and wheat sourdough breads. Shelf life for sourdough breads was one (teff and oat), two (buckwheat, quinoa and sorghum) and 3 days (wheat) and was not prolonged by sourdough addition. The inferior aroma of breads prepared from the gluten-free flours was also not improved by sourdough addition.  相似文献   

7.
This study examined the effect of the incorporation of flesh fibre concentrate (FFC) from apple, pear, and date pomaces on wheat bread dough performance and bread quality. The nutritional composition and techno-functional properties (water-holding capacity, oil-holding capacity, swelling capacity) of FFC were determined beforehand. Dough performance was evaluated by farinograph, alveograph and visco-amylograph. Bread quality was assessed by physical (weight, specific volume, and color) and textural (hardness and elasticity) parameters. Digital imaging analysis was also performed in order to better understand the observed effects. Results showed that the addition of FFC in wheat flour significantly improved (P?<?0.05) dough properties inducing an increase of water absorption (from 55 to 60 %), of stability (from 4 to 31 min),of tenacity (from 83 to 116 mmH2O) , a reduction of extensibility (from 69 to 29 mm), of softening (from 60 to 20 BU), of breakdown (from 34 to 25 BU) and of setback (from 103 to 93 BU) in comparison to the control dough (without fibre). The formulation containing FFC produced loaves that had various colors (crust, 0?<?ΔE*?<?10 and crumb, 0?<?ΔE*?<?20; ΔE* corresponding to color variation), a comparable specific volume (2.7 vs 2.9 cm3/g for control) and a more aerated internal crumb structure compared to the control. During storage of breads at 20 °C, there was no significant difference (P?<?0.05) between enriched and control bread crumb and crust texture profiles.  相似文献   

8.
《Journal of food engineering》2003,56(2-3):265-267
The performance of different fat replacers at various levels (Inulin powder, Inulin gel and Simplesse) in wheat bread and dough compared to a control containing block fat was examined. Empirical and fundamental rheological tests were carried out on the doughs. Volume yield, crumb texture, crust colour and crumb image characteristics were measured for the baked loaves. The addition of inulin gel was found to increase water absorption. Dough complex modulus for doughs containing fat was significantly lower (P<0.01) than the doughs containing the replacers. The addition of simplesse and inulin increased the complex modulus (P<0.01). Loaves containing the control fat and inulin gel had similar volume yields, significantly higher (P<0.01) than loaves containing simplesse or inulin powder. Inulin powder and simplesse had adverse effects on crumb hardness, producing slices significantly harder (P<0.01) than slices with the control fat or inulin gel. Overall it was found that breads containing the inulin gel were similar in quality characteristics to the control breads containing fat.  相似文献   

9.
A. Ktenioudaki  F. Butler 《LWT》2011,44(3):602-610
The aeration profile of doughs made from Irish wheat varieties was examined during fermentation. The fermentation process was evaluated with a Chopin rheofermentometer and also by monitoring the dynamic dough density. Minimum dough density which indicates maximum dough expansion was correlated with maximum dough height reached in the rheofermentometer (r = −0.8). Baked loaves from the samples were evaluated for their overall quality. The poor baking potential of one variety (Trappe) as well as the low expansion capacity of another (Raffles) was discriminated from the results obtained from both tests. Loaf volume was correlated with the maximum dough height measured with the rheofermentometer and with the minimum dough density. The overall baking quality of the flours was evaluated by using 3D scatter plots which combined loaf volume with number of cells/mm2 and intrinsic hardness. Using this technique, the varieties were divided into clusters depending on their baking quality. Principal Components Analysis was carried out incorporating all the measured dough and bread properties. The loading plot indicated that rheological parameters are those most likely to predict loaf volume whereas other crumb characteristics such as cell size and crumb hardness were difficult to relate to measured dough properties.  相似文献   

10.
The objective of this study was to determine the importance of raw material and processing variables that influence pretzel quality by utilizing a screening experiment design. Eleven variables were selected based on preliminary experiments, and a two‐level‐11‐factor (2 11 ) fractional factorial experimental design was used to screen the variables. Several responses were measured for dough before and after extrusion, for half‐baked and fully baked pretzels. These responses are important indicators of consistency and quality during pretzel processing. Results indicated that flour protein content, the amount of water added to make dough and dough mixing time were important variables influencing dough behavior. Caustic concentration affected brightness of half‐baked pretzels but did not influence the color of the final product. Baking time was the most important factor for both half‐baked product and final product qualities. The hardness of fully baked pretzels was influenced by baking time, temperature in baking oven zone 1, drying time and drying temperature. The color of final products was significantly influenced by baking time, while both baking time and drying temperature affected the moisture content of the final product. A key observation was that none of the raw material or dough processing parameters, within the range tested, influenced final pretzel quality as defined by pretzel moisture content, hardness or color.  相似文献   

11.
Baking technology for tasty bread with high wholemeal oat content and good texture was developed. Bread was baked with a straight baking process using whole grain oat (51/100 g flour) and white wheat (49/100 g four). The effects of gluten and water content, dough mixing time, proofing temperature and time, and baking conditions on bread quality were investigated using response surface methodology with a central composite design. Response variables measured were specific volume, instrumental crumb hardness, and sensory texture, mouthfeel, and flavour. The concentration and molecular weight distribution of β-glucan were analysed both from the flours and the bread. Light microscopy was used to locate β-glucan in the bread. Proofing conditions, gluten, and water content had a major effect on specific volume and hardness of the oat bread. The sensory crumb properties were mainly affected by ingredients, whereas processing conditions exhibited their main effects on crust properties and richness of the crumb flavour. β-glucan content of oat bread was 1.3/100 g bread. The proportion of the highest molecular weight fraction of β-glucan was decreased as compared with the original β-glucan content of oat/wheat flour. A great part of β-glucan in bread was located in the large bran pieces.  相似文献   

12.
Resistant starch (RS) is a nutritional ingredient commonly used in bread products as dietary fibre (DF). This ingredient presents similar physiological functions than those imparted by DF, promoting beneficial effects such as the reduction of cholesterol and/or glucose levels on blood. Quality improvement of bread containing RS, with an optimized combination of emulsifiers, will be useful in the development of new and healthy bakery products. The objective of this research was to analyse the effects of different emulsifiers on several quality parameters of dough and bread prepared with wheat flour partially substituted with resistant starch as a dietary fibre. A blend of wheat flour/maize-resistant starch (MRS; 87.5:12.5) with sodium chloride, ascorbic acid, α-amylase, compressed yeast and water was utilized. Emulsifiers were incorporated to formulations in different levels according to a simplex centroid design. The viscoelastic, textural and extensional properties of dough were analysed. Bread quality was evaluated throughout the gelatinization and retrogradation of starch, specific volume of loaves, and texture and firmness of bread crumb. The incorporation of 12.5% (w/w) of MRS to wheat flour caused an increase of 5% in water absorption. Stability decreases markedly (from 9.9 to 2.2 min) and the mixing tolerance index increased (from 79 to 35 UF). The sodium stearoyl lactylate (SSL)–diacetyl tartaric acid esters of monoglycerides (DATEM) mixture increased hardness and resistance to extension on dough, whilst dough containing Polysorbate 80 (PS80) was softer; nevertheless, both types of dough retained less CO2. An optimized concentration of the three emulsifiers (0.24% SSL, 0.18% PS80, 0.08% DATEM, w/w) was obtained by surface response methodology. The bread prepared with this combination of emulsifiers presented a considerable specific volume with a very soft crumb.  相似文献   

13.
The feasibility of emulsifying starches as bread improvers was investigated by incorporating starch sodium octenyl succinate (OSA-st), pre-gelatinized OSA-st and hydrolysed spray-dried OSA-st at 2.5, 5 and 10 % into wheat flour. Dough rheological properties (creep and recovery measurements; Mixolab, Alveograph) and bread quality parameters (specific loaf volume, crust and crumb colour, crumb moisture, crumb grain features, texture) were evaluated. The substituted flours, except hydrolysed OSA-st, significantly increased water absorption measured by Mixolab. The study on the rheological behaviour of doughs containing emulsifying starches, performed using a rheometer and an Alveograph, showed that OSA-st incorporation yielded strengthened dough, whereas pre-gelatinized and hydrolysed OSA-st addition led to more extensible dough. With regard to the thermal behaviour, investigated in water-limited systems by Mixolab, doughs prepared from pre-gelatinized OSA-st and hydrolysed OSA-st exhibited lower maximum peak torque, whilst all three examined starches increased cooking stability and decreased the setback value. Specific volumes of loaves baked from the substituted flours increased, and the highest effect was observed with pre-gelatinized OSA-st, which consequently produced bread crumbs with the largest mean gas cell area. The bread crumbs baked with octenyl succinate starches were whiter and softer. Although upon 1 day of storage no significant moisture retention capacity of emulsifying starches was noticed, the firmness values of OSA-st and pre-gelatinized OSA-st-supplemented bread crumbs, after 24 h of storage, were similar to or significantly lower than those of the control determined 2 h after baking. The obtained results indicate a requirement for further optimization of the octenyl succinate starch-supplemented doughs in terms of the combination of different types and levels of modified starches in order to obtain maximum bread quality.  相似文献   

14.
Many different raw materials have been proposed for producing nutritious gluten-free breads, but rarely, there is a parallel analysis of the effect of physical treatment on those ingredients. The aim of this study was to incorporate carob flour fractions of varying particle size on rice gluten-free breads prepared with carob/rice (15:85) flour blends. Carob flour particle size was controlled by fractionation or jet milling application. Quality features of gluten-free breads containing carob flour and commercially available gluten-free breads were compared. Carob flour addition led to breads with improved colour parameters, crumb structure, retarded firming and lower moisture loss compared to rice bread. Further improvement in specific volume, crumb hardness, protein and ash content and estimated glycaemic index (eGI) could be obtained by a careful selection of the particle size distribution of the carob flour. Carob breads prepared either with the coarsest or the finest fraction prepared using jet milling led to end products with the highest specific volume (≈2.2 g/cm3) and the lowest crumb hardness (≈5.5 N), although they had lower specific volume and harder crumbs than breads from commercial blends (≈3–4 g/cm3, 0.6–3.8 N). Nevertheless, rice-based bread made with the finest carob flour was superior considering its slower firming, protein content and lower eGI. The incorporation of carob flour obtained by jet milling in rice-based gluten-free breads led to end products with quality characteristics and sensory acceptance resembling commercial breads and high nutritional value.  相似文献   

15.
Effects of Waxy Wheat Flour and Water on Frozen Dough and Bread Properties   总被引:1,自引:0,他引:1  
ABSTRACT:  The quality of bread made from frozen dough is diminished by changes that occur during freezing. New cultivars of waxy wheat flour (WWF), containing less than 2% amylose, offer unique properties for the production of baked products. In this study, dough properties and bread quality were investigated at various levels of WWF (0% to 45% flour weight) and water (55% to 65%). Dough stickiness increased with higher levels of WWF and water. During frozen storage, dough with greater WWF and lower water had less change in stickiness. Maximum resistance to extension (MRE) decreased with higher WWF and water. Dough with greater WWF and less water had less change in extensibility after frozen storage. Dough with greater WWF and water was more extensible. Nuclear magnetic resonance (NMR) studies showed that frozen dough with higher WWF content had lower transverse relaxation ( T 2) time of 9 to 11ms. After frozen storage, dough with higher WWF still showed lower T 2. Dough with 15% WWF had higher yeast activity. Bread made from 15% and 30% WWF had higher volume in bread made from unfrozen and frozen dough. Bread firmness decreased with higher amounts of WWF and water. This research demonstrated that specific combinations of WWF and water produced a better quality of frozen dough and bread.  相似文献   

16.
The use of bran and whole grain flour changes dough rheology and causes difficulties in manufacturing bakery products. The aim of this study was to analyse the influence of substituting refined wheat flour (WF) by wheat bran (WB; 5%, 10%, 20%, 30% and 40%) or whole grain wheat flour (WGWF; 10%, 20%, 30%, 40% and 50%) on dough rheological properties and pan bread quality characteristics. The addition of WB and WGWF increased water absorption and resistance to extension and decreased stability, extensibility and peak viscosity. Effects with WB were more pronounced. The presence of WB or WGWF increased crumb moisture content, firmness and hardness and decreased specific volume of pan bread. It is important to set new farinographic and extensographic standards when using WB and WGWF, allowing for a correct correlation between rheology and quality characteristics of bakery products, as the same standards used for WF are not valid.  相似文献   

17.
Microbial, physical and structural changes in high pressured wheat dough were studied as a function of pressure level (50-250 MPa) and holding time (1-4 min). Thereafter, selected conditions of high hydrostatic processing (HPP) were applied to bread dough and the technological quality of the obtained breads was studied. The effect of HPP on wheat dough was investigated by determining microbial population (total aerobic mesophilic bacteria, moulds and yeasts), color and mechanical and texture surface related dough parameters (cohesiveness, adhesiveness, hardness and stickiness). HPP reduced the endogenous microbial population of wheat dough from 104 colony forming units/g (CFU) to levels of 102 CFU. HPP treatment significantly (P < 0.05) increased dough hardness and adhesiveness, whereas treatment time reduced its stickiness. Scanning electron micrographs suggested that proteins were affected when subjected to pressure levels higher than 50 MPa, but starch modification required higher pressure levels. HPP treated yeasted doughs led to wheat breads with different appearance and technological characteristics; crumb acquired brownish color and heterogeneous cell gas distribution with increased hardness due to new crumb structure. This study suggests that high hydrostatic processing in the range 50-200 MPa could be an alternative technique for obtaining novel textured cereal based products.  相似文献   

18.
Bread represents a suitable food product for the addition of functional ingredients, such as the cholesterol-lowering dietary fibre oat β-glucan and the prebiotic inulin. Therefore, these soluble fibres were incorporated into wheat as well as gluten-free bread, and their effects on rheological properties of the dough, on bread quality and on crumb microstructure were compared. The level of remaining β-glucan as well as its molecular weight was determined using an enzyme kit and size-exclusion chromatography. The addition of oat β-glucan resulted in a higher water addition level, whereas incorporation of inulin had the opposite effect. Rheological testing showed that the incorporation of oat β-glucan results in a more elastic dough. The baking characteristics mainly affected by fibre addition were volume and crust colour, with inulin increasing and oat β-glucan decreasing loaf-specific volume in the gluten-free breads. Inulin led to a darkening of the crust of both bread types, whereas addition of oat β-glucan resulted in a lighter crust of gluten-free bread. Oat β-glucan softened the crumb of gluten-free bread, but had the opposite effect on wheat bread. Inulin resulted in an increased crumb hardness as well as the rate of staling. Beta-glucan breakdown was more pronounced in wheat bread than in gluten-free bread. The results show that the use of β-glucan to increase the nutritional value of wheat bread is limited due to negative influences on technological properties. However, this soluble fibre is highly suitable for incorporation into gluten-free bread.  相似文献   

19.
Maize is used for bakery and for gluten‐free food for coeliac patients. Our objective was assessing diversity for dough rheology and breadmaking in maize with different origins, grain types and growth cycles. Endosperm type affected bread crumb colour having dent maize higher L* and a* and instant recovery speed. Population origin affected flotation index, onset pasting temperature, bread crumb colour, hardness and instant recovery speed. Finally, growth cycle affected flotation index, crumb colour L* and a* and cohesiveness. Water‐binding capacity, crumb colour and hardness were the most discriminative parameters for maize. The maize population Andaluz/Daxa was the less distant from wheat parameters, and Tremesino was the most different.  相似文献   

20.
The study focused on partial replacement in gluten-free breads of corn starch with tapioca and corn resistant starch preparations. The use of resistant starch resulted in the increase of storage and loss moduli of the dough, and the lowering of loss tangent, which indicates its more elastic character. The incorporation of resistant starch reduced creep and recovery compliance and elevated zero shear viscosity. Modified doughs displayed higher starch gelatinization temperatures and lower viscosities that were proportional to the share of RS. It was found that the loaves baked with the share of resistant starch had less hard crumb than bread without RS addition. The crumb hardness diminished with the increasing amount of applied RS preparation. The addition of resistant starch raised total dietary fibre, by up to 89%, as compared to control (bread without RS addition). The most pronounced change was observed for insoluble dietary fibre (increase 137%), while only slight increase was found for its soluble fraction (18%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号