首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the target temperature on the molecular emission of femtosecond laser-induced breakdown spectroscopy(LIBS) was investigated experimentally. An Al target was ablated to produce laser-induced plasma. The Al target was uniformly heated to a maximum of 250℃. The measured molecular emission was AlO(△ν=0) from the femtosecond LIBS of the Al target.The measurements indicated that the molecular emission of AlO increased as the temperature of the Al target increased. In addition, a two-temperature model was used to simulate the evolution of the electron and lattice temperature of the Al target with different initial temperatures. The simulated results showed that the electron and lattice temperatures of Al irradiated by the femtosecond laser increased as the initial temperature of the Al target increased; also, the simulated ablated depth increased. Therefore, an increase in the initial Al target temperature resulted in an enhancement in the spectral signal of AlO from the femtosecond LIBS of Al,which was directly related to the increase in the size of the ablated crater. The study suggested that increasing the temperature of the target improves the intensity of molecular emission in femtosecond LIBS.  相似文献   

2.
The influence of the target temperature on the molecular emission of femtosecond laser-induced breakdown spectroscopy (LIBS) was investigated experimentally.An Al target was ablated to produce laser-induced plasma.The Al target was uniformly heated to a maximum of 250 ℃.The measured molecular emission was AlO (△υ =0) from the femtosecond LIBS of the Al target.The measurements indicated that the molecular emission of AIO increased as the temperature of the A1 target increased.In addition,a two-temperature model was used to simulate the evolution of the electron and lattice temperature of the Al target with different initial temperatures.The simulated results showed that the electron and lattice temperatures of Al irradiated by the femtosecond laser increased as the initial temperature of the A1 target increased;also,the simulated ablated depth increased.Therefore,an increase in the initial A1 target temperature resulted in an enhancement in the spectral signal of AlO from the femtosecond LIBS of Al,which was directly related to the increase in the size of the ablated crater.The study suggested that increasing the temperature of the target improves the intensity of molecular emission in femtosecond LIBS.  相似文献   

3.
In this paper, we investigated the emission spectra of plasmas produced from femtosecond and nanosecond laser ablations at different target temperatures in air. A brass was selected as ablated target of the experiment. The results indicated that spectral emission intensity and plasma temperature showed similar trend for femtosecond and nanosecond lasers, and the two parameters were improved by increasing the sample temperature in both cases. Moreover, the temperature of nanosecond laser-excited plasma was higher compared with that of femtosecond laser-excited plasma, and the increase of the plasma temperature in the case of nanosecond laser was more evident. In addition, there was a significant difference in electron density between femtosecond and nanosecond laser-induced plasmas. The electron density for femtosecond laser decreased with increasing the target temperature, while for nanosecond laser, the electron density was almost unchanged at different sample temperatures.  相似文献   

4.
The combination of spark discharge and laser-induced breakdown spectroscopy (LIBS) is called spark discharge assisted LIBS. It works under laser-plasma triggered spark discharge mode, and shows its ability to enhance spectral emission intensity. This work uses a femtosecond laser as the light source, since femtosecond laser has many advantages in laser-induced plasma compared with nanosecond laser, meanwhile, the study on femtosecond LIBS with spark discharge is rare. Time-resolved spectroscopy of spark discharge assisted femtosecond LIBS was investigated under different discharge voltages and laser energies. The results showed that the spectral intensity was significantly enhanced by using spark discharge compared with LIBS alone. And, the spectral emission intensity using spark discharge assisted LIBS increased with the increase in the laser energy. In addition, at low laser energy, there was an obvious delay on the discharge time compared with high laser energy, and the discharge time with positive voltage was different from that with negative voltage.  相似文献   

5.
In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance(LTSD) on spectral emission of brass plasma under linearly and circularly polarized pulses with different pulse energies was investigated. The results indicated that the position with the strongest spectral emission moved toward focusing lens with increasing the energy. At the same laser energy, the line emission under circularly polarized pulse was stronger compared with linearly polarized pulse for different LTSDs. Next, electron temperature and density of the plasma were obtained with Cu(Ⅰ) lines,indicating that the electron temperature and density under circularly polarized pulse were higher compared to that under linearly polarized pulse. Therefore, changing the laser polarization is a simple and effective way to improve the spectral emission intensity of femtosecond laserinduced plasma.  相似文献   

6.
In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.  相似文献   

7.
The effect of the matrix temperature on laser-induced plasma generated in bulk water by using a532 nm pulsed laser beam has been studied.Ca Ⅰ and Ⅱ emission line intensities were recorded for an aqueous solution of CaCl_2 in the temperature range of 7℃-70℃.The emission line intensities did not follow the matrix temperature in our experiments.Maximum intensities were observed at ~18℃ for both lines.Herein,a possible mechanism responsible for the observed variation in intensity is suggested,in which laser-produced bubbles play important roles.Bubble formation is essential to ignite plasma in the liquid and more feasible at the higher liquid temperature.However,the abundant bubbles at the higher temperature can scatter the incident laser beam more effectively to decrease the energy delivered for the laser-induced plasma.Thus,these two roles have effects on the optical emission intensities in opposite ways.The validity of the suggested mechanism is discussed based on the plasma temperature,temperature dependence of the refractive index of water,plasma electron density,scattered light intensity,and plasma ignition threshold energy.Our result indicates that the temperature of the liquid is also an important parameter to be considered in the laser-induced breakdown spectroscopy analysis of bulk liquid samples and its application in deep-sea exploration.  相似文献   

8.
The plasma shielding effect is one of the major weaknesses of laser-induced breakdown spectroscopy(LIBS) as it causes non-linearity in signal strength. Although LIBS is typically carried out in constant laser energy, this non-linearity causes a reduction in sensitivity. In this work, we systematically examine laser-induced plasma, formed by two different excitation source modes, i.e. single pulse(SP)-excitation and single-beam-splitting double-pulse(SBSDP)-excitation over Zr-2.5% Nb alloy. The two most important plasma parameters influencing the emission line intensity, plasma temperature(T_e) and electron density(N_e) were studied and compared for both modes of laser excitation. Comparison of the results conclusively demonstrates that due to the splitting of the laser energy in the SBS-DP mode, the plasma shielding effect is significantly reduced. The reduced plasma shielding translates to an increased laser–sample coupling under SBS-DP mode. Temporal imaging of the total intensity of the laserinduced plasma in both excitation modes was also studied. The study shows how the plasma shielding effect can be reduced to improve the analytical quality of the LIBS methodology.  相似文献   

9.
Analysis of Pulverized Coal by Laser-Induced Breakdown Spectroscopy   总被引:2,自引:0,他引:2  
Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various enviromnents. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LIBS, and the effects of particle size are analyzed. A powerful pulse Nd:YAG laser is focused on the coal sample at atmosphere pressure, and the emission spectra from laser-induced plasmas are measured by time-resolved spectroscopy, and the intensity of analyzed spectral lines is obtained through observing the laser plasma with a delay time of 0.4 #s. The experimental results show that the slope of calibration curve is nearly 1 when the concentration of the analyzed element is relatively low, and the slope of curve is nearly 0.5 when the concentration of C is higher than other elements. In addition, using the calibration-free model without self-absorption effect, the results show that the decreasing of particle size leads to an increase of the plasma temperature.  相似文献   

10.
Single-pulse and double-pulse optical emission spectroscopy (OES) analyses were carried out in air by using ultrashort laser pulses at atmospheric pressure. The aim of this work is to use spectroscopic methods to analyze the early phase of laser-induced plasma after the femtosecond laser pulse. The temporal behavior of emission spectra of air plasma has been characterized. In comparison with the single-pulse scheme, the plasma emission obtained in the double-pulse scheme presents a more intense continuum along with several additional ionic lines. As only one line is available in the single-pulse scheme, the plasma temperature measurements were performed using only the relative line-to-continuum intensity ratio method, whereas the relative line-to-line intensity ratio method and the relative line-to-continuum intensity ratio method were used simultaneously to estimate the electron temperature in the double-pulse scheme. The results reveal that the temperature values obtained by the two methods in the double-pulse scheme agree. Moreover, this shows that the relative line-to-continuum intensity ratio method is suitable for early phase of laser-induced plasma diagnostics. The electron number density was estimated using the Stark broadening method. In the early phase of laser-induced plasma, the temporal evolution of the electron number density exhibits a power law decrease with delay time.  相似文献   

11.
In this paper,the influence of magnetic field strength on laser-induced breakdown spectroscopy(LIBS) has been investigated for various pressures.The plasma plume was produced by employing Q-switch Nd:YAG laser ablation of an Al-Li alloy operating at a 1064 nm wavelength.The results indicated that the LIBS intensity of the Al and Li emission lines is boosted with an increase of magnetic strength.Typically,the intensity of the Al Ⅰ and Li Ⅰ spectral emissions can be magnified by 1.5-3 times in a steady magnetic field of 1.1 T compared with the field-free case.Also,in this investigation we recorded time-resolved images of the laser-produced plume by employing a fast ICCD camera.The results show that the luminance of the plasma is enhanced and the time of persistence is increased significantly,and the plasma plume splits into two lobes in the presence of a magnetic field.The probable reason for the enhancement is the magnetic confinement effect which increases the number density of excited atoms and the population of species in a high energy state.In addition,the electron temperature and density are also augmented by the magnetic field compared to the field-free case.  相似文献   

12.
The influence of a vacuum on the laser-induced breakdown spectroscopy(LIBS) of carbon in the ultraviolet wavelength range is studied.Experiments are performed with graphite using a LIBS system,which consists of a 1064 nm Nd:YAG laser,a vacuum pump,a spectrometer and a vacuum chamber.The vacuum varies from 10 Pa to 1 atm.Atomic lines as well as singly and doubly charged ions are confirmed under the vacuums.A temporal evolution analysis of intensity is performed for the atomic lines of C Ⅰ 193.09 nm and C Ⅰ 247.86 nm under different vacuum conditions.Both time-integrated and time-resolved intensity evolutions under vacuums are achieved.The lifetimes of the two atomic lines have similar trends,which supports the point of view of a 'soft spot'.Variations of plasma temperature and electron density under different vacuums are measured.This study is helpful for research on carbon detection using LIBS under vacuum conditions.  相似文献   

13.
Laser-Induced Breakdown Spectroscopy(LIBS) has been demonstrated to be an effective method for slag analysis.In order to better clarify the nature of the plasma generated from a slag sample,an Nd:YAG pulse laser at 1064 nm wavelength was used to ablate the slag sample in air.The temporal and spatial evolutions of plasma parameters,including emission intensity,electronic density and plasma temperature,have been studied.It is shown that the electron density and plasma temperature drop off rapidly with the delay time as a result of plasma expansion and cooling.It has been found that the electron density of the whole plasma is close to that of the center regions in the plasma.The results of the spatial distributions on the two-dimensional plane have shown that there is a big region with lower electron density values caused by the recombination process in the center of the plasma.The maximum of the plasma temperature takes place at the regions close to the target,and the border of the plasma front-head has higher plasma temperatures than that of the center part.  相似文献   

14.
Tokamak exhaust is an important part of the deuterium-tritium fuel cycle system in fusion reactions. In this work, we present a laser-induced breakdown spectroscopy (LIBS)-based method to monitor the gas compositions from the exhaust system in the tokamak device. Helium (He), a main impurity in the exhaust gas, was mixed with hydrogen (H2) in different ratios through a self-designed gas distribution system, and sealed into a measurement chamber as a standard specimen. A 532 nm wavelength laser pulse with an output power of 100 mJ was used for plasma excitation. The time-resolved LIBS is used to study the time evolution characteristics of the signal strength, signal-to-background ratio (SBR), signal-to-noise ratio (SNR) and relative standard deviation (RSD) of the helium and hydrogen characteristic lines. The Boltzmann two-line method was employed to estimate the plasma temperature of laser-induced plasma (LIP). The Stark-broadened profile of He I 587.56 nm was exploited to measure the electron density. From these studies, an appropriate time was determined in which the low RSD% was consistent with the high signal-to-noise ratio. The He I 587.56 nm and Hα emission lines with good signal-to-noise ratio were extracted from the spectrum and used in the external standard method and internal standard method for quantitative analysis. The test results for mixed gas showed that the average relative error of prediction was less than 11.15%, demonstrating the great potential of LIBS in detecting impurities in plasma exhaust gas.  相似文献   

15.
We investigated the dependence of laser-induced breakdown spectral intensity on the focusing position of a lens at different sample temperatures(room temperature to 300 ℃) in atmosphere.A Q-switched Nd:YAG nanosecond pulsed laser with 1064 nm wavelength and 10 ns pulse width was used to ablate silicon to produce plasma. It was confirmed that the increase in the sample's initial temperature could improve spectral line intensity. In addition, when the distance from the target surface to the focal point increased, the intensity firstly rose, and then dropped.The trend of change with distance was more obvious at higher sample temperatures. By observing the distribution of the normalized ratio of Si atomic spectral line intensity and Si ionic spectral line intensity as functions of distance and temperature, the maximum value of normalized ratio appeared at the longer distance as the initial temperature was higher, while the maximum ratio appeared at the shorter distance as the sample temperature was lower.  相似文献   

16.
《等离子体科学和技术》2016,18(12):1192-1197
In this paper, we present a study on the effect of inter-pulse delay using femtosecond double-pulse laser-induced breakdown spectroscopy in a collinear geometry. The temporal evolution of spectral intensity is performed for the lines of Fe I 423.60 nm, Fe I 425.08 nm and Fe I 427.18 nm. It is found that, by selecting appropriate inter-pulse delay, the signal enhancement can be significantly increased compared with the single-pulse case. A three-fold enhancement in the current experiment is obtained. The plasma temperature and electron density are also investigated based on the theory of Boltzmann plot and Stark broadening. We attribute the main mechanism for emission enhancement to the plasma re-heating effect.  相似文献   

17.
Fuel retention measurement on plasma-facing components is an active field of study in magnetic confinement nuclear fusion devices.The laser-induced breakdown spectroscopy(LIBS)diagnostic method has been well demonstrated to detect the elemental distribution in PFCs.In this work,an upgraded co-axis LIBS system based on a linear fiber bundle collection system has been developed to measure the hydrogen(H) retention on a tantalum(Ta) sample under a vacuum condition.The spatial resolution measurement of the different positions of the LIBS plasma can be achieved simultaneously with varying delay times.The temporal and spatial evolution results of LIBS plasma emission show that the H plasma observably expands from the delay times of 0-200 ns.The diameter of Ta plasma is about 6 mm which is much less than the size of H plasma after 200 ns.The difference in the temporal and spatial evolution behaviors between H plasma and Ta plasma is due to the great difference in the atomic mass of H and Ta.The depth profile result shows that H retention mainly exists on the surface of the sample.The temporal and spatial evolution behaviors of the electron excited temperature are consistent with that of the Ta emission.The result will further improve the understanding of the evolution of the dynamics of LIBS plasma and optimize the current collection system of in situ LIBS in fusion devices.  相似文献   

18.
《等离子体科学和技术》2016,18(11):1123-1129
An experimental setup of laser-induced graphite plasma was built and the spectral characteristics and properties of graphite plasma were studied. From the temporal behavior of graphite plasma, the duration of CN partials(B~2∑~+→X~2∑~+) emission was two times longer than that of atomic carbon, and all intensities reached the maximum during the early stage from0.2 μs to 0.8 μs. The electron temperature decreased from 11807 K to 8755 K, the vibration temperature decreased from 8973 K to 6472 K, and the rotational temperature decreased from7288 K to 4491 K with the delay time, respectively. The effect of the laser energy was also studied, and it was found that the thresholds and spectral characteristics of CN molecular and C atomic spectroscopy presented great differences. At lower laser energies, the electron excited temperature, the electron density, the vibrational temperature and rotational temperature of CN partials increased rapidly. At higher laser energies, the increasing of electron excited temperature and electron density slow down, and the vibrational temperature and rotational temperature even trend to saturation due to plasma shielding and dissociation of CN molecules. The relationship among the three kinds of temperatures was T_(elec)T_(vib)T_(rot) at the same time. The electron density of the graphite plasma was in the order of 10~(17)cm~(-3) and 10~(18)cm~(-3).  相似文献   

19.
In this paper,an experimental study of collinear geometry double-pulse femtosecond LIBS was performed on a Ni sample in ambient air in an effort to clarify the contributing processes responsible for the signal enhancement observed in comparison with the single-pulse case.Doublepulse LIBS spectra show a very clear enhancement when an optimum inter-pulse delay was used.The influences of the inter-pulse delay between two pulses on the LIBS signal intensity,electron temperature and density were investigated.It is most remarkable that the evolutions of signal enhancement and electron temperature versus the inter-pulse delay showed the same behavior and revealed two main regimes of interaction.These results provide additional insight into the possible emission enhancement mechanisms in the double pulse configuration.  相似文献   

20.
This work reports that the intensity ratio of spectral lines having similar self-absorption characteristics during laser induced breakdown spectroscopy(LIBS) analysis can become nearly constant over a wide range of irradiation conditions if the intensities are integrated over a sufficiently long time. It is shown that the plasma temperature and intensity ratio of these spectral lines have temporal similarity. The spectral lines with similar self-absorption properties may be selected to improve the accuracy and consistency of LIBS analysis results under an environment with fluctuating measurement conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号