首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of sulfur hexafluoride (SF6) discharge is vital for its application in gas-insulated equipment. Direct current partial discharge (PD) may cause SF6 decomposition, and the decomposed products of SF6, such as F atoms, play a dominant role in the breakdown of insulation systems. In this study, the PD caused by metal protrusion defects is simulated by a needle-plate electrode using pulsed high voltage in SF6/Ar mixtures. The spatial and temporal characteristics of SF6/Ar plasma are analyzed by measuring the emission spectra of F and Ar atoms, which are important for understanding the characteristics of PD. The spatial resolved results show that both F and Ar atom spectral intensities increase first from the plate anode to the needle and then decrease under the conditions of a background pressure of 400 Pa, peak voltage of −1000 V, frequency of 2 kHz, pulse width of 60 μs, and electrode gap of 5–9 mm. However, the distribution characteristics of F and Ar are significantly different. The temporal distribution results show that the spectral intensity of Ar decreases first and then increases slowly, while the spectral intensity of F increases slowly for the duration of the pulsed discharge at the electrode gap of 5 mm and the pulse width of 40–80 μs.  相似文献   

2.
In order to further improve the propulsion performance of pulsed plasma thrusters for space micro propulsion, a novel laser ablation pulsed plasma thruster is proposed, which separated the laser ablation and electromagnetic acceleration. Optical emission spectroscopy is utilized to investigate the plasma characteristics in the thruster. The spectral lines at different times,positions and discharge intensities are experimentally recorded, and the plasma characteristics in the discharge channel are concluded through analyzing the variation of spectral lines. With the discharge energy of 24 J, laser energy of 0.6 J and the use of aluminum propellant, the specific impulse and thrust efficiency reach 6808 s and 70.6%, respectively.  相似文献   

3.
The Ar atmospheric pressure plasma was found to be an excellent laboratorial source for green aurora emission. However, the characteristic and production mechanism of the green aurora emission of the Ar atmospheric pressure plasma are still not clear. In this work, an Ar plasma in a long glass tube which emits intense green aurora light is investigated. With the long glass tube, it can be concluded that the green aurora emission in the Ar plasma is not owing to the mixture of Ar plasma plume with the surrounding air. It is also found that the green aurora emission often appeared beyond the active electrode when the active electrode is placed at the downstream of the gas flow. The green emission disappears when the traces amount of O2 or N2 (about 0.05%–0.07%) is added to Ar. This is because the O2 molecules deactivate the upper state O(1S), which results in the decrease of the green emission. On the other hand, when N2 is added, Ar metastable atoms are quenched by N2, which results in the decrease of O atoms and eventually leads to the decrease of the green emission intensity. The intensity of the green aurora emission increases when the driving voltage frequency increases from 1 to 10 kHz. More importantly, it is found that the green aurora emission is not affected when a grounded stainless steel needle is in contact with the plasma plume. Thus, the green emission is not driven electrically. All these findings are helpful for the understanding of the physics and its applications of atmospheric pressure plasma jet in space physics, laser physics and other application areas.  相似文献   

4.
As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering(LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5?×?10(19)m~(-3) to7.1?×?10~(20)m~(-3) and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison,an optical emission spectroscopy(OES) system was established as well. The results showed that the electron excitation temperature(configuration temperature) measured by OES is significantly higher than the electron temperature(kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium(LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.  相似文献   

5.
Silicon etching is an essential process in various applications,and a major challenge for etching process is anisotropic high aspect ratio etching characteristics.The etch profile is determined by the plasma parameters and process parameters.In this study,the plasma state with each process parameters were analyzed through the optical emission spectroscopy(OES)plasma diagnostic sensor by both chemical and physical approaches.Electron temperature and electron density were additionally acquired using the corona model with OES data that provides chemical species information,and the etch profile was evaluated through scanning electron microscope measurement data.The results include changes in profile with gas ratio,bias power,and pressure.We figure out that factors like ion energy and ion angular distribution as well as chemical reaction affect the anisotropic profile.  相似文献   

6.
李磊  夏维东  赵宇晗 《核技术》2004,27(5):350-353
提出了一种磁驱动滑移电弧放电产生大气压非平衡等离子体的方法,给出了这种装置的基本结构,主要性能及基本原理。在弧电流0.6A左右得到了约100m/s的电弧移动速度和约80V/mm的电场强度,产生了非平衡度较高的大气压非平衡等离子体。  相似文献   

7.
Plasma flow control technology has broad prospects for application. Compared with conventional dielectric barrier discharge plasma actuators (DBD-PA), the sliding discharge plasma actuator (SD-PA) has the advantages of a large discharge area and a deflectable induced jet. To achieve the basic performance requirements of light weight, low cost, and high reliability required for UAV (Unmanned Aerial Vehicle) plasma flight experiments, this work designed a microsecond pulse plasma supply that can be used for sliding discharge plasma actuators. In this study, the topology of the primary circuit of the microsecond pulse supply is determined, the waveform of the output terminal of the microsecond pulse plasma supply is detected using the Simulink simulation platform, and the design of the actuation voltage, the pulse frequency modulation function and the construction of the hardware circuit are achieved. Using electrical diagnosis and flow field analysis, the actuation characteristics and flow characteristics of sliding discharge plasma under microsecond pulse actuation are studied, the optimal electrical actuation parameters and flow field characteristics are described.  相似文献   

8.
In this work, an Ar plasma jet generated by an AC-microsecond-pulse-driven dielectric barrier discharge reactor, which had two ring-shaped electrodes isolated from the ambient atmosphere by transformer oil, was investigated. By special design of the oil insulation, a chemically active Ar plasma jet along with a safe and stable plasma process as well as low emission of CO and NOx were successfully achieved. The results indicated that applied voltage and frequency were basic factors influencing the jet temperature, discharge power, and jet length, which increased significantly with the two operating parameters. Meanwhile, gas velocity affected the jet temperature in a reverse direction. In comparison with a He plasma jet, the Ar plasma jet had relatively low jet temperature under the same level of the input parameters, being preferable for bio-applications. The Ar plasma jet has been tested to interact with human skin within 5 min without the perception of burnt skin and electrical shock.  相似文献   

9.
The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods.The nozzle-cylinder electrode in the discharge reactor was supplied witha negative nanosecond pulsed generator.The optical emission spectrum diagnosis revealed that OH(A~2∑~+?→?X~2Π,306–309 nm),N~3_2(CΠ→B~3Π_g,337 nm),O(3p~5p→3s~5s~0,777.2 nm)and O(3p~3p→3s~3s~0,844.6 nm)were produced in the discharge plasma channels.The electron temperature(T_e)was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm,and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 e V.The gas temperature(T_g)that was measured by Lifbase was in a range from 400 K to 600 K.  相似文献   

10.
The coaxial surface wave linear plasma with preeminent axial uniformity is developed with the 2.45 GHz microwave generator. By optical emission spectroscopy, parameters of the argon linear plasma with a length over 600 mm are diagnosed under gas pressure of 30 and 50 Pa and different microwave powers. The spectral lines of argon and Hβ (486.1 nm) atoms in excited state are observed for estimating electron excitation temperature and electron density. Spectrum bands in 305–310 nm of diatomic OH (${{\rm{A}}}^{2}{{\rm{\Sigma }}}^{+}-{{\rm{X}}}^{2}{{\rm{\Pi }}}_{{\rm{i}}}$) radicals are used to determine the molecule rotational temperature. Finally, the axial uniformity of electron density and electron excitation temperature are analyzed emphatically under various conditions. The results prove the distinct optimization of compensation from dual powers input, which can narrow the uniform coefficient of electron density and electron excitation temperature by around 40% and 22% respectively. With the microwave power increasing, the axial uniformity of both electron density and electron excitation temperature performs better. Nevertheless, the fluctuation of electron density along the axial direction appeared with higher gas pressure. The axial uniformity of coaxial surface wave linear plasma could be controlled by pressure and power for a better utilization in material processing.  相似文献   

11.
In this work we used a passive measurement method based on a high-impedance electrostatic probe and an optical emission spectroscope (OES) to investigate the characteristics of the double layer (DL) in an argon helicon plasma.The DL can be confirmed by a rapid change in the plasma potential along the axis.The axial potential variation of the passive measurement shows that the DL forms near a region of strong magnetic field gradient when the plasma is operated in wavecoupled mode,and the DL strength increases at higher powers in this experiment.The emission intensity of the argon atom line,which is strongly dependent on the metastable atom concentration,shows a similar spatial distribution to the plasma potential along the axis.The emission intensity of the argon atom line and the argon ion line in the DL suggests the existence of an energetic electron population upstream of the DL.The electron density upstream is much higher than that downstream,which is mainly caused by these energetic electrons.  相似文献   

12.
Cold atmospheric plasma (CAP) driven by pulsed high-voltage power has specific advantages in various fields, such as the growth promotion of edible fungi in plasma agriculture. Compared with other strains, Ganoderma lucidum has the significant advantage of high medicinal value, but the shortcomings of low yield, long growth cycle, and an uneven market quality. In this study, Ganoderma lucidum was treated with a CAP powered by a homemade pulsed high-voltage power supply. Three groups of Ganoderma lucidum were treated under different conditions. The stalk lengths and pileus areas of Ganoderma lucidum were recorded to evaluate growth status. Results showed that treatment frequency affected growth status considerably. Ganoderma lucidum was treated with 40 s plasma once a week and showed an improved growth status with a 33.63% increase in average stalk length and a 28% increase in the number of individuals whose pileus areas was greater than the average. Meanwhile, the growth speed was accelerated. However, treatment at an excessive frequency would damage and slow down the growth of Ganoderma lucidum.  相似文献   

13.
Ar/C_2H_5OH plasma jet is generated at atmospheric pressure by 33 MHz radio-frequency power source. This RF excitation frequencies which are higher than 13.56 MHz had rarely been used in atmospheric pressure plasma. The plasma characteristics of ethanol are investigated. The introduction of ethanol leads to the generation of four excited carbonaceous species C, CN, CH and C_2 in plasma, respectively. Optical emission intensities of four carbonaceous species were strengthened with ethanol content increasing in the range of 0-4600 ppm. The ethanol content increase results in all the Ar spectra lines decrease. The reason is that the electron temperature decreases when ethanol content is high. The emission intensity ratios of C/C_2, CN/C_2 and CH/C_2 decrease with the increase of ethanol content, showing that the relative amount of C_2 is increasing by increasing the ethanol flow. The emission intensity ratios of excited species did not change much with the increase of RF power in stable discharge mode.  相似文献   

14.
Atmospheric pressure air/Ar/H_2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic(OES) diagnostic technique is used for the characterization of plasmas and for identifications of OH and O radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation Tx?≈?5550–9000 K, rotational Tr?≈?1350–2700 K and gas Tg?≈?850–1600 K temperatures, and electron density n?(1.1-1.9) ′101 4 cm~(-3) e under different experimental conditions. The production and destruction of OH and O radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of OH and O radicals indicate that their production rates are increased with increasing Ar content in the gas mixture and applied voltage. nereveals that the higher densities of OH and O radicals are produced in the discharge due to more effective electron impact dissociation of H_2O and O_2 molecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced n e.The productions of OH and O are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, Tgsignificantly reduces with the enhanced air flow rate. This investigation reveals that Ar plays a significant role in the production of OH and O radicals.  相似文献   

15.
Focus-offset collinear dual-pulse laser-induced breakdown spectroscopy is designed and used to investigate the laser ablation and spectral intensity with an aluminum alloy sample. The laser crater morphologies and ablation volumes were measured. An inter-pulse time delay dependent ablation efficiency on a nanosecond laser-heated sample was observed, which was similar to the trend of spectral intensity versus inter-pulse time delay in the delay time less than 3 μs. Based on the observation, the nanosecond pulse laser preheating effect on subsequent second laser ablation and signal enhancement is discussed, which will be helpful for understanding the ablation and signal enhancement mechanism in the standard collinear DP-LIBS technique.  相似文献   

16.
《等离子体科学和技术》2019,21(11):115403-44
In this paper, a honeycomb structure jet array with seven jet units was adopted to generate plasmas. Both the average discharge power and the emission intensity of the main excited species increase with increasing applied voltage. There are three stages of discharge evolution at different applied voltages: initial discharge, uniform discharge and strong coupling discharge.The spatial distribution of the emission intensity of the excited species can be divided into three categories: growth class, weakening class and variation class. The gas temperature along the whole plasma plume at different applied voltages is maintained at around 320K and can be widely used in heat-labile applications.  相似文献   

17.
A facility which is called atmospheric pressure and normal temperature plasma jet was introduced in this paper. After the wool surface was treated by this kind of facility with Ar in different irradiating times, the time-effect of the fabric wettability has been weakened, and if the parameters of the irradiating time and the voltage of the facility are appropriate, the time-effect of wettability can be effectively inhibited. With the stable wettability, the fabric can be dressed without PVA (polyvinyl alcohol) which can cause lager pollution in the textile field, so the method without the time-effect of the textile wettability will be useful in the field of clean textile production. Undoubtedly, the stable wettability of textile surface was caused by the stable hydrophilic molecules on the textile surface. Thus, the reaction process and results on the textile surface treated by plasma needs to be studied to optimize the parameters of the irradiating time and the voltage of the plasma jet. So the initial experimental studies on the optimization of the parameters of the plasma jet were discussed in this paper, and the authors believe that the method without the time-effect also can be used in other fields of plasma application.  相似文献   

18.
The experimental progress of laser-driven Cs3Sb photocathodes is reported. The cathodes prepared in an UHV system can be used to generate short-pulsed, high-brightness electron beams. Emission properties are tested under a 50–200 ns pulsed Xe+ laser illumination. The quantum efficiency in the range of 2–5.6% and current density of 108 A/cm2 are obtained. A brightness of 1.85 × 109 A/m2 rad2 is also measured. Mass analysis and other methods have been used for investigating the plasma formation when laser intensity rises above the “break-down” threshold. The current density increases rapidly during the plasma electron emission, but the pulse width of the emission is enlarged, and the brightness is limited. It is observed that the plasma is just composed of cesium and antimony atoms from the cathode rather than adsorbed residual gases.  相似文献   

19.
The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma.In this paper,a glass vacuum chamber and a pair of plate electrodes were designed and fabricated,using 13.56 MHz radio frequency(RF)discharge technology to ionize the working gas of Ar.This discharge was mathematically described with equivalent circuit model.The discharge voltage and current of the plasma were measured atdifferent pressures and different powers.Based on the capacitively coupled homogeneous discharge model,the equivalent circuit and the analytical formula were established.The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation.The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa,the average electron temperature is about 1.7–2.1 e V and the average electron density is about 0.5?×?10~(17)–3.6?×?10~(17)m~(-3).Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.  相似文献   

20.
The surface characteristics of SUS304 stainless steel are investigated before and after surface modification by Ar/N2/O2 plasma under atmospheric pressure conditions. It was found that plasma treatment of a stainless steel plate has a significant effect on the wettability, contact angle, and free energy of the SUS304 surface. The contact angle and surface free energy were analyzed. The optimal surface modification parameters are a power of 1000 W, a torch-to-sample distance of 80 mm, a treatment time of 300 s, and an oxygen content of 1.5 wt%. Under these processing conditions, a contact angle of just 1.60° was obtained. The surface morphology, surface element composition, and surface roughness of the treated SUS304 specimens were examined using scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The results show that the optimal surface modification conditions lead to the formation of fine, uniformly distributed crystallites in the SUS304 microstructure. Moreover, compared to the untreated surface, the treated surface had a significantly lower carbon content and a more uniform distribution of surface peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号