首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PVC made by suspension and anionic polymerization was partially dehydrochlorinated by three different methods. In the first one, a solution in THF and in the second one, particles swollen by dioxane were treated with alcoholic KOH at low temperatures. In the third method, a solution of PVC in DMF was heated to 130°C or refluxed (153°C). The reactions were followed by UV spectrophotometry and the products analyzed by GPC. Furthermore, the products were ozonolyzed and the molecular weights of the polymeric residues determined by GPC. Treatment with KOH in THF yielded products with randomly distributed polyene sequences. At higher degrees of dehydrochlorination a slight decrease in molecular weight was observed. The polymers were shown to be built up by PVC segments with an average degree of polymerization between 70 and 80, interspaced by polyene segments each with relatively few conjugated double bonds in sequence (fewer than 15). The reaction of KOH with particles swollen in dioxane was slower but yielded products with the same molecular structure. Thermal dehydrochlorination in DMF gave rise to long polyene sequences. They were fewer in number as evidenced by the higher molecular weights of the residues after ozonolysis.  相似文献   

2.
The early stages of the thermal degradation of PVC were studied. Two commercial, suspension-polymerized resins were thermally treated at different temperatures and oxygen contents. Dehydrochlorination kinetics were followed by conductometric measurements and the formation of polyene sequences by ultraviolet-visible spectroscopy. Crosslinking and chain scission were followed by gel chromatography (GPC) and viscometry. No chain scission was observed in nitrogen atmosphere and no crosslinking in oxygen. Degradation in air proceeded by both reactions. The rate of dehydrochlorination for one of the investigated polymers increased linearly with the logarithm of the oxygen pressure. In nitrogen, an increasing degradation temperature was found to give both an increasing crosslinking and less discoloration. In oxygen, chain scission reactions showed a slight temperature dependence. The temperature effect on the discolorations was similar to that in nitrogen. The main difference between the investigated resins was the amount of internal doubled bonds in the original polymers, the ratio being 2:1. The higher amount resulted in a higher rate of dehydrochlorination, a larger extent of chain scission in oxygen, and a lower extent of crosslinking in nitrogen. Both in oxygen and nitrogen, the obtained results are consistent with allylic mechanisms. In nitrogen, the polyene formation supposedly proceeds by a unimolecular reaction and crosslinking by an intermolecular nonradical dehydrochlorination. In oxygen, radical reactions are superposed and may lead to chain rupture via β-scissions of alkoxy radicals.  相似文献   

3.
A laser Raman spectroscopic study has been made of the effect of barium and cadmium stabilizers on the thermal dehydrochlorination of poly(vinyl chloride) (PVC). The results obtained indicate that, in terms of the total level of dehydrochlorination, cadmium stearate is not as superior to barium stearate as the visual appearance of the polymer suggests. Also, the level of dehydrochlorination produced in the presence of a mixed stabilizer is not significantly lower than that produced in the presence of barium stearate alone, while samples of the latter exhibit much stronger color. It has also been shown that cadmium stearate can reduce the length of long polyene sequences, presumably by a reaction near the center of such a sequence.  相似文献   

4.
A critical review of the title subject supports the following major conclusions. Thermal dehydrochlorination of poly(vinyl chloride) (PVC) begins with internal allylic chloride and tertiary chloride structural defects formed during polymerization. The tertiary chloride is associated with 2,4-dichloro-n-butyl, 1,3-di(2-chloroethyl), and chlorinated long branches. Mechanisms for the formation of all of the labile defects are well established. ‘Carbonylallyl’ structures and certain isotactic conformers of ordinary monomer units are unimportant as initiators of thermal dehydrochlorination. Both the initiation and the subsequent formation of conjugated polyene sequences occur via carbenium chloride ion pairs or by a closely related concerted four-center quasi-ionic route. Six-center concerted processes, pathways involving free radicals, and other mechanistic schemes suggested recently are not involved in polyene elongation. However, during thermal degradation, ordinary monomer units are converted into internal allylic chloride defects by a mechanism that may include the abstraction of hydrogen by triplet cation diradicals derived from polyene intermediates. Cyclization reactions seem likely to contribute to the termination of polyene growth. When PVC is thermolyzed in blends with other polymers, unusual kinetic phenomena are detected that remain to be fully explained.  相似文献   

5.
The rates of dehydrochlorination of commercial poly (vinyl chlorides) and the distribution of the lengths of the resulting polyene sequences may vary widely depending on the origin of the polymer. – In the presence of diphenyllead dichloride the rate of dehydrochlorination is increased, while the resulting discoloration is less intense compared to that of pure poly (vinyl chloride) because of a shift of the polyene sequence lengths distribution. Genuine stabilizers, on the other hand, effect retardation in dehydrochlorination as well as a shift of the sequence lengths distribution towards shorter polyene sequences. The causes for this behavior of admixed stabilizers using lead and cadmium octoate as examples as well as of internally stabilized PVC are discussed.  相似文献   

6.
A set of poly(vinyl chloride) samples were investigated with respect to their thermal stability. The dehydrochlorination rates were measured in nitrogen at 190°C by use of a very accurate, conductometric method. For all polymers studied, a significant molecular weight increase was observed after 0.4% conversion. With only one exception, samples exhibiting higher degradation rates showed higher absorptions (350–450 nm) after 0.4% dehydrochlorination. In addition, the relative amount of short polyene sequences was found to be higher for polymers with higher degrees of branching. The dehydrochlorination reaction was predominantly initiated at sites of internal unsaturation (allylic chlorines), but an initiation at tertiary chlorines and unstable end-groups could not be completely omitted. Head-to-head units, extraneous impurities, and syndiotactic sequences were found to be of minor importance in this respect.  相似文献   

7.
The stabilization of poly(vinyl chloride) (PVC) involving complementary colors has been previously reported. Obliterating polyene color with various dyes containing complementary colors with the polyene color is studied on the basis of colorimetry. The changes in the color of heated PVC containing Thren Blue IRN, Ceres Blue GN, Oplas Violet 730, Macro-Lex Violet 3R, Macro-Lex Green 5B, or Macro-Lex Red 5B were investigated using a differential colorimeter. When the PVCs containing various dyes were heated, the discoloration from the color of each dye to the color mixture of each dye and polyene color was observed with increased heating times for all systems. In particular, an achromatic color has been observed, during the heat treatments, in PVC containing blue dyes such as Thren Blue IRN or Ceres Blue GN, which set up complementary color relationship with the polyene color. Thus the color of polyenes, which appears with advancing dehydrochlorination of PVC, is masked by the blue dyes. It is also apparent that the obliteration of polyene color does not depend on the chemical influences of the dyes added, but by color mixing of polyenes and the dyes. Cool-color dyes markedly slow down the appearance of polyene colors.  相似文献   

8.
Thermal degradation of PVC occurs in two stages, with each stage subdivided into two substages. The first refers to the dehydrochlorination, where hydrochloric acid is formed, and giving polyene structures. Hitherto, the degradation mechanism and action of hydrochloric acid as a catalyst during the dehydrochlorination stage are poorly known. Recently, the importance of the tacticity has gained attention for its influence on the dehydrochlorination mechanism. The present work focused on the dehydrochlorination stage, studying the molecular structure by FTIR analysis and the kinetic parameters by TGA analysis in Nitrogen atmosphere, based on three mathematical methods: Friedman, Kissinger, and Flynn-Wall-Ozawa. The sample was a pure homopolymer obtained by suspension polymerization. The dehydrochlorination kinetics follows a first order reaction model and occurs by nucleation and growth. The dehydrochlorination begins with the loss of very labile chlorine atoms present in defective and isotactic molecular segments. The formed HCl acts as a catalyst in the degradation. Following 40% conversion, a drop in Ea is observed. After that, chlorine atoms present in syndiotactic and atactic sequences, are released and, added to the large number of polyene chain sequences, and an increase in Ea is observed up to 60% conversion, where the dehydrochlorination stage is concluded.  相似文献   

9.
The kinetics of the thermal degradation of solid powdered poly(vinyl chloride) (PVC) under nitrogen was studied by thermogravimetry, rate of hydrogen chloride evolution, and rate of polyene sequence formation. These results are accommodated by a chain mechanism involving initiation by random dehydrochlorination at normal monomer residues of PVC, and a series of intermediates, each leaking to a stable conjugated polyene sequence. Structural irregularities such as allylic and tertiary chlorine are responsible for a fast initiation process at the very beginning of the degradation. Mean rate constants and activation parameters for random initiation, propagation, and termination reactions of the PVC degradation chain were calculated by simulation. Activation enthalpy/entropy correlations for the experimental data available for dehydrochlorination of chloroalkanes and chloroalkenes in the gas and in the liquid phase or nonpolar solvents and elementary reactions of PVC degradation show that initiation is an HCl elimination through a transition state of four centers requiring a synperiplanar conformation of the >CH–CCl< group, whereas propagation is a dehydrochlorination through a transition state of six centers requiring a cis configuration of the double bond.  相似文献   

10.
The thermal degradation of PVC was studied at 190°C in pure nitrogen and nitrogen containing 10, 20, and 40% HCl (by volume). The rate of dehydrochlorination was determined by gravimetry. Degradations in nitrogen were followed with conductometry in addition. Changes in molecular weight distribution and degree of long-chain branching (LCB) were determined by gel permeation chromatography–viscometry and polyene sequence distribution by UV spectroscopy. The rate of dehydrochlorination increases with the HCI content of the atmosphere. The rate of molecular enlargement also increases but only as a result of the increased dehydrochlorination rate. The increase in M w and LCB are thus related to the extent of conversion only. Changes in the UV spectra indicate that the increase in rate of dehydrochlorination is mainly due to increased propagation rate in atmospheres containing less than 10% HCI. At higher HCI contents an increase in initiation rate is noted. It is suggested that this, at least in part, is due to the fact that HCI, by forming a cyclic transition state, catalyzes the random elimination of HCI. This process, in turn, is promoted by the presence of polyene sequences.  相似文献   

11.
The concentration of conjugated polyene sequences was studied in γ-irradiated PVC with 4% admixture of four epoxy stabilizers: diglycidyl ether of 2,2-bis(4-hydroxy-3-methylphenyl)propane (I), styrene oxide (1,2-epoxy ethyl benzene) (IV), epoxidized ricinus oil (VI), and epoxidized soybean oil (Drapex 6.8) (VII). As in the former investigations (Papers I and II), the process of the formation of the polyenes occurs in two stages. The concentration of polyene sequences with n double bonds, Hn the total amount of polyene sequences, ∑Hn, the average length of the polyene sequence, n , and the two extents of reaction x and p, were computed. The stabilizing effect of all compounds used agrees with the increasing content of epoxy groups. The addition of stabilizers diminishes the value of n . The decrease of the fraction of long sequences and the increase of short ones occurs. Apart from the binding of evolved HCl, the protective effect towards the macromolecules of PVC consists mainly in the inhibition of growth of chain dehydrochlorination by the epoxy groups.  相似文献   

12.
The thermal degradation of virgin and HCI-treated PVC in powder form, as well as of PVC films of different thicknesses, has been studied as a function of time and temperature. The rate of dehydrochlorination was determined conductimetrically and from the polyene sequence distributions as obtained by UV spectroscopy. Increases in the rate of dehydrochlorination, ranging between 30 and 45%, were observed at all temperatures for the samples pretreated with HCI, while the corresponding activation energies were found to be lower by about 20%. For the PVC films, the rate increased with thickness, i.e., with longer residence time of evolved HCI within the sample. The results offer insight regarding the autocatalytic role of evolved HCI.  相似文献   

13.
Thermal behavior of graft copolymers of polyvinyl chloride with polystyrene prepared by using a cationic initiator (AlCl3) was evaluated by measurement of rates of dehydrochlorination in nitrogen atmosphere. With increase in the extent of grafting the rates were found to decrease. Dynamic thermogravimetric analysis revealed an overall improvement in thermal stability of copolymers. Development of polyene sequences in degraded polymer samples was evaluated by measurement of electronic absorption spectra. In comparison to PVC, graft copolymer samples had fewer conjugated double bonds.  相似文献   

14.
This paper investigates the structural changes of polyvinyl chloride (PVC) in melt‐blends of a low‐density polyethylene (LDPE) and polyvinyl chloride (PVC), and the effects of LDPE content and number of extrusion passes. These effects were examined in terms of changes in weight average molecular weight and number average molecular weight, polyene and carbonyl indices, color changes of the blend, and the variations in glass transition and decomposition temperatures. It was found that loading LDPE into PVC led to the formation of short‐chain LDPE grafted PVC (sLDPEgPVC) copolymers, via a macro‐radical cross‐recombination reaction, which had greater weight average molecular weight with unchanged number average molecular weight, increased decomposition temperature, lower glass transition temperature, as compared to the pure PVC sample. The dehydrochlorination reaction of PVC was suppressed by the macro‐radical cross‐recombination reaction with addition of LDPE, the effect being more pronounced at 13.0 wt% LDPE. For a given LDPE content, the macro‐radical cross‐recombination and dehydrochlorination reactions competed with one another, thus causing the increases in molecular weight average and molecular weight number up to the 4th extrusion pass. At the 5th extrusion pass, the dehydrochlorination reaction was predominant owing to a depletion of LDPE content to be grafted onto PVC molecular chains. The glass transition and decomposition temperature decreased with increasing number of extrusion passes. Polym. Eng. Sci. 44:487–495, 2004. © 2004 Society of Plastics Engineers.  相似文献   

15.
Poly(vinyl chloride) (PVC) is occasionally discolored yellow or red by the formation of polyene chains in the polymer backbone. It has been noted that the formation of such polyene structures is caused by dehydrochlorination of the PVC, accelerated by tertiary amines. Thus, in the present study, we investigated the influence of amines on the formation of polyene structures in PVC, using resonance Raman spectroscopy. The amount of polyene produced by thermal treatment with amine vapor exposure was determined based on the resonance Raman intensity ratio of the polyene band to the PVC band. The results showed that the discoloration of PVC, indicating the formation of polyene structures, was most prominently caused by 1,4‐diazabicyclo[2.2.2.]octane (DABCO), bis(2‐dimethylaminoethyl)ether (BDMEE), or N,N,N′,N′‐tetramethyl‐1,6‐diaminohexane (TMDAH), because of their high basicity and nucleophilicity. In addition, the formation of polyene structures was inhibited by the co‐presence of amine and protic solvent (water, ethanol, and 2‐propanol) or additives containing hydroxyl groups (glycerin, poly[vinyl alcohol]), suggesting that amine nucleophilicity toward PVC is reduced by the protonation of amine to lone pairs of tertiary amines. J. VINYL ADDIT. TECHNOL., 26:253–258, 2020. © 2019 Society of Plastics Engineers  相似文献   

16.
As polymer model compounds for branched poly (vinyl chloride) with tertiary chlorine atoms copolymers of vinylchloride and 2-chloropropene were prepared. The copolymerization was carried out in bulk at 25°C with acetylcyclohexane sulfonylperoxide. The rate of the thermal degradation of the copolymers in ethyl benzoate increases with growing content of 2-chloropropene monomer units in the polymers. In the same manner, the relative frequency distribution of polyene sequences shifts in favour of shorter sequences. The experimental results can be explained by an increased number of starting points for the dehydrochlorination due to the increasing content of tertiary chlorine atomes.  相似文献   

17.
The development of early colour and the dehydrochlorination rate were compared for poly(vinyl chloride) samples obtained by suspension polymerization using two different initiators, dicetylperoxydicarbonate and butylperoxyneodecanoate. The degree of discolouration was measured on pressed plates and expressed as yellowness index (YI), the polyene sequence distribution was monitored by UV/Vis-spectroscopy, and the degradation rate was determined by measuring evolved HCI conductometrically. The PVC sample initiated by dicetylperoxydicarbonate exhibited more extensive early colour and a higher dehydrochlorination rate as compared to the sample obtained with butylperoxyneodecanoate as initiator. The UV/Vis-spectra showed that the early colour originates from polyene sequences. After extraction of the PVC resins with heptane: acetone (85 : 15) the early colour turned out to be almost the same for the two samples. From 13C-NMR measurements it was found that the extract of the sample polymerized with dicetylperoxydicarbonate contains unreacted initiator. We suggest that the radicals formed when the remaining initiator decomposes initiate dehydrochlorination. Our results also indicate that radicals from dicetylperoxydicarbonate may cause long-chain branches during polymerization. The radicals formed from butylperoxyneodecanoate, on the other hand, do not seem to react with the polymer molecules. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Organic thiols containing at least one carboxylate ester group (ester thiols) are excellent thermal stabilizers for both rigid and plasticized poly(vinyl chloride) (PVC). Their mechanism of action is shown to involve the deactivation of unstable structural defects by nucleophilic chloride displacement, the retardation and removal of coloration through thiol additions to polyene double bonds, and the prevention of autoacceleration during thermal dehydrochlorination through polyene shortening reactions and the scavenging of free radicals formed from polyenes and HCl. An unusually facile displacement of labile chloride that is favored by thiol acidity can account, at least in part, for the relatively high effectiveness of dipentaerythritol hexakis(mercaptoacetate) as a stabilizer. J. VINYL ADDIT. TECHNOL., 13:170–175, 2007. © 2007 Society of Plastics Engineers  相似文献   

19.
The reduction of atactic poly(vinyl chloride), PVC, with lithium aluminum hydride in tetrahydrofuran is a random process; in polymers containing long syndiotactic chain segments the latter withstand reduction longest. The reduced polymers contain CH3-groups, the amount of which can be determined by i. r. spectroscopic compensation against polymethylene. Furthermore, the i. r. spectra indicate the existence of trans-vinylene groups; depending upon the conditions of polymerization, both these groups are found to be present in amounts of 5 to 15 per 1000 carbon atoms. The experimental results of thermal degradation of PVC samples reduced to different extents are in agreement with the assumption that dehydrochlorination is primarily caused by carbon double bonds within the PVC chains.  相似文献   

20.
PVC has been dehydrochlorinated with alcoholic alkali in soution at 7°C for different lengths of time. At early stages of dehydrochlorination the dominant reaction is intramolecular removal of HCl and this gives rise to two intense Raman bands at ~ 1126 (ν1) and ~ 1518 cm?12) and following UV irradiation, to a quadruplet ESR spectrum. Increasing polyene sequence length and intermolecular removal of HCl at later stages of reaction alters the quadruplet signal to a singlet, shifts ν1 and ν2 to lower frequencies and increases the molecular weight. The presence of polyene units stiffens the chain and increases the elastic modulus. The Tg is, however, lowered slightly due to the removal of bulky chlorine atoms which relieves steric hindrance and dipole interaction between neighboring chains. The β-transition is also rendered less distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号