首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baojiao Gao  Fuqiang An  Yong Zhu 《Polymer》2007,48(8):2288-2297
In this paper, a new surface molecular imprinting technique is put forward, and a kind of novel ion-imprinted polymers (IIPs) were prepared through a new approach: firstly functional macromolecule polyethyleneimine (PEI) was grafted onto the surfaces of silica gel particles via the coupling grafting method (“grafting to” method) and the composite material PEI/SiO2 with chemical linking was formed; secondly the ionic imprinting was carried out towards the macromolecule PEI grafted on the surface of silica particles using Cu2+ or Cd2+ ion as a template, epichlorohydrin (ECH) as a crosslinking agent and by coordination linkage actions, and Cu2+ ion (or Cd2+ ion)-imprinted material IIP-PEI/SiO2 was prepared. The binding characteristics of IIP-PEI/SiO2 for Cu2+ ion (or Cd2+ ion) were studied in detail by adopting both static and dynamic methods. The experimental results show that the ion-imprinting material IIP-PEI/SiO2 has specific recognition ability for the template ions, and this character displays mainly in two aspects: (1) it has high affinity for the template ions, its binding amounts for the template ions are much greater than that of the non-imprinted composite material PEI/SiO2, and the adsorption capacity enhances nearly two times compared to PEI/SiO2; (2) it has excellent selectivity for the template ions, for the IIP-PEI/SiO2 by using Cu2+ as template ion, its selectivity coefficients relative to Zn2+ and Ni2+ are 80.21 and 86.08, respectively, and for the IIP-PEI/SiO2 by using Cd2+ as template ion, its selectivity coefficients relative to Cr3+ and Pb2+ are 77.05 and 88.22, respectively. Besides, the imprinting material IIP-PEI/SiO2 has a fine elution property using HCl solution as eluent. The obtained imprinting material by using the new surface molecular imprinting techniques possesses superexcellent binding property for template molecules or ions because of the distribution of imprinted cavities in a thin polymer layer and smaller diffusion barrier.  相似文献   

2.
Glycoamylase (AMG) is an γ‐amylase enzyme which catalyzes the breakdown of large α(1,4)‐linked malto‐oligosaccharides to glucose. It is an extracellular enzyme and is excreted to the culture medium. In this study, AMG was immobilized on a variety of metal affinity membranes, which were prepared by chelating Cu2+ ions onto poly(hydroxyethyl methacrylate) (PHEMA) using N‐methacryloyl‐(L )‐histidine methyl ester (MAH), N‐methacryloyl‐(L )‐cysteine methyl ester (MAC), and N‐methacryloyl‐(L )‐phenylalanine methyl ester (MAPA) as metal‐chelating comonomers for reversible immobilization of AMG. The PHEMAH, PHEMAC, PHEMAPA membranes were synthesized by UV‐initiated photo‐polymerization and Cu2+ ions were chelated on the membrane surfaces. Cu2+‐chelated membranes were characterized by swelling tests, SEM, contact angle measurements, elemental analysis, and FTIR. AMG immobilization on the Cu2+‐chelated membranes was performed by using aqueous solutions of different amounts of AMG at different pH values and Cu2+ loadings. Durability tests concerning desorption of AMG and reusability of the Cu2+‐chelated membranes yielded acceptable results. It was computationally determined that AMG possesses four likely Cu2+/Zn2+ binding sites, away from the catalytic site, to which the metal‐chelated membranes can be efficiently used. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
A poly(vinyl alcohol) membrane (PVA) was modified by radiation graft copolymerization of acrylic acid/styrene (AAc/Sty) comonomers. The Cu and Fe ion‐transport properties of these membranes were investigated using a diaphragm dialysis cell. In the feed solution containing CuCl2 or a mixture of CuCl2 and FeCl3, the PVA‐g‐P(AAc/Sty) membranes showed high degrees of permselectivity toward Cu2+ rather than toward Fe3+. The permeation of Cu2+ ions through the membranes was found to increase with decrease in the grafting yield. However, as the content of Cu2+ ions in the Cu/Fe binary mixture feed solutions decreased, the rate and the amount of transported Cu2+ through the grafted membrane decreased, with no appreciable permselectivity toward Fe3+. When Fe2+ ions were used instead of Fe3+ ions in the feed solution containing Cu2+, the transport of both Cu2+ and Fe2+ through the membrane was observed. The rate of transport of Fe2+ was higher than that of Cu2+. In addition, it was found that the selective transport of ions was significantly influenced by the pH difference between both sides of the membranes. As the pH of the feed or the received solution decreased, both Cu2+ and Fe3+ passed through the membrane and were transported to the received solution. The role of carboxylic acid and the hydroxyl groups of the grafted membranes in the transportation process of ions is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 125–132, 2000  相似文献   

4.
Phosphorous recovery from wastewater by nanofiltration (NF) is a feasible and sustainable approach, but challenges still exist in the development of highly efficient membranes for the selective permeation of phosphorus. Herein an interpenetrating network (IPN) of crosslinked polyvinyl alcohol (PVA) is integrated with Zn2+ moieties through coordination with the amino groups of crosslinked polyethyleneimine (PEI) and deposited on borate crosslinked polydopamine-grafted carbon nanotubes (B-PDA-CNT) intermediate layer incorporated into the microfiltration substrate to form the composite membrane. The positively charged membrane in acidic conditions affords good rejection (>85%) of heavy metals ions including Cd2+, Cu2+, Zn2+, Pb2+, and Ni2+. Meanwhile, a low phosphorus rejection of <15% is realized with the application of a relatively low transmembrane pressure. This presupposes that the developed approach achieves selective removal of heavy metals from a phosphate solution and is attractive for low pressure recovery of phosphorus. © 2018 American Institute of Chemical Engineers AIChE J, 65: 755–765, 2019  相似文献   

5.
N‐heterocyclic acrylamide monomers were prepared and then transferred to the corresponding polymers to be used as an efficient chelating agent. Polymers reacted with metal nitrate salts (Cu2+, Pb2+, Mg2+, Cd2+, Ni2+, Co2+, Fe2+) at 150°C to give metal‐polymer complexes. The selectivity of the metal ions using prepared polymers from an aqueous mixture containing different metal ion sreflected that the polymer having thiazolyl moiety more selective than that containing imidazolyl or pyridinyl moieties. Ion selectivity of poly[N‐(benzo[d]thiazol‐2‐yl)acrylamide] showed higher selectivity to many ions e.g. Fe3+, Pb2+, Cd2+, Ni2+, and Cu2+. While, that of poly[N‐(pyridin‐4‐yl)acrylamide] is found to be high selective to Fe3+ and Cu2+ only. Energy dispersive spectroscopy measurements, morphology of the polymers and their metallopolymer complexes, thermal analysis and antimicrobial activity were studied. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42712.  相似文献   

6.
The chelating membranes for adsorption of metal ions were prepared by the bonding of linear and branched polyethylenimines (LPEI and BPEI) on the glycidyl methacrylate (GMA) photografted porous polyethylene (pPE) (pPE‐g‐PGMA) films. The adsorption and desorption properties of LPEI and BPEI‐bonded pPE‐g‐PGMA (LPEI‐(pPE‐g‐PGMA) and (BPEI‐(pPE‐g‐PGMA)) films to Cu2+ ions were investigated as a function of the grafted amount, amount of bonded PEI, molecular mass of PEI, pH value, and temperature. The amounts of LPEI and BPEI bonded to the pPE‐g‐PGMA films increased over the reaction time, and the bonding of LPEI and BPEI offered the water‐absorptivity to the pPE‐g‐PGMA films. The amount of adsorbed Cu2+ ions at pH 5.0 had the maximum value at the grafted amount of 10 mmol/g for the (LDPEI‐(pPE‐g‐PGMA) and (BPEI‐(pPE‐g‐PGMA) films with a constant amount of bonded PEI. The amount of adsorbed Cu2+ ions for the LPEI‐(pPE‐g‐PGMA) films was higher than that for the BPEI‐(pPE‐g‐PGMA) films. The amount of Cu2+ ions desorbed from the LPEI‐(pPE‐g‐PGMA) and BPEI‐(pPE‐g‐PGMA) films increased with an increase in the HCl concentration. The quantities of Cu2+ ions of about 100% were desorbed in the aqueous HCl solutions of more than 0.1M for the LPEI‐(pPE‐g‐PGMA) films and more than 0.05M for the BPEI‐(pPE‐g‐PGMA) films. The amounts of adsorbed Cu2+ ions were almost the same in each adsorption process at pH 5.0. This indicates that the LPEI‐(pPE‐g‐PGMA) and BPEI‐(pPE‐g‐PGMA) films can be applied to a repeatedly generative chelating membrane for adsorption and desorption of metal ions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5965–5976, 2006  相似文献   

7.
Ni2+‐imprinted monolithic column was prepared for the removal of nickel ions from aqueous solutions. N‐Methacryloyl‐L ‐histidine was used as a complexing monomer for Ni2+ ions in the preparation of the Ni2+‐imprinted monolithic column. The Ni2+‐imprinted poly(hydroxyethyl methacrylate‐N‐methacryloyl‐L ‐histidine) (PHEMAH) monolithic column was synthesized by bulk polymerization. The template ion (Ni2+) was removed with a 4‐(2‐pyridylazo) resorcinol (PAR):NH3? NH4Cl solution. The water‐uptake ratio of the PHEMAH–Ni2+ monolith increased compared with PHEMAH because of the formation of nickel‐ion cavities in the polymer structure. The adsorption of Ni2+ ions on both the PHEMAH–Ni2+ and PHEMAH monoliths were studied. The maximum adsorption capacity was 0.211 mg/g for the PHEMAH–Ni2+ monolith. Fe3+, Cu2+, and Zn2+ ions were used as competitive species in the selectivity experiments. The PHEMAH–Ni2+ monolithic column was 268.8, 25.5, and 10.4 times more selective than the PHEMAH monolithic column for the Zn2+, Cu2+, and Fe3+ ions, respectively. The PHEMAH–Ni2+ monolithic column could be used repeatedly without a decrease in the Ni2+ adsorption capacity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
PES/Pebax and PEI/Pebax composite membranes were prepared by coating the porous PES and PEI substrate membranes with Pebax-1657. The morphology and performance of the prepared membranes were investigated by SEM and CO2 and CH4 permeation tests. The CO2 permeances of 28 and 52 GPU were achieved for PES/Pebax and PEI/Pebax composite membranes, respectively, with CO2/CH4 selectivities almost equal to that of Pebax (26). The experimental data were further subjected to a theoretical analysis using the resistance model. It was found that the porosity and the thickness of the dense section of PES substrate were an order of magnitude higher than those of PEI substitute. The porosity/thickness ratio of PEI substrate was, however, higher than PES, explaining the higher permeance of PEI/Pebax composite membrane. Substrates with porosities much higher than the Henis-Tripodi gas separation membrane were used in this work, aiming to achieve the selectivity of Pebax, rather than those of the substrate membrane materials.  相似文献   

9.
《分离科学与技术》2012,47(2):398-421
Abstract

Ultrafiltration membranes are largely being applied for heavy metal ion separations from aqueous streams. Cellulose acetate (CA) and aminated polysulfone (APSf) based membranes are prepared in the absence and presence of the polymeric additive, polyethylene glycol, PEG 600, in various compositions. The effects of polymer blend composition and additive concentration on compaction, pure water flux, membrane hydraulic resistance, water uptake, and contact angle has been investigated to evaluate the performance of the membranes and the results are discussed. Surface and cross-sectional morphologies of membranes were also analyzed using scanning electron microscopy. Toxic heavy metal ions such as Cu2+, Ni2+, Cd2+, and Zn2+ were separated by the blend membranes using polyethyleneimine (PEI) as polymeric ligand. The rejection and permeate flux efficiencies of the blend membranes are compared with pure cellulose acetate membranes.  相似文献   

10.
The interface behaviour in the facilitated co-transport of Ag(I), Cu(II) and Zn(II) ions through supported liquid membranes (SLMs) made of a flat-sheet polypropylene membrane support containing cryptands (2.2.2 or 2.2.1) as carriers was studied. The liquid-liquid extraction tests showed a maximum distribution coefficient when the carrier concentration was greaterthan 10−4M. In transport experiments the transmembrane flux increased with increasing carrier concentration reaching a limiting value at greater than 10−3M concentration. The calculation ofthe diffusion coefficients in membranes showed ahigherdiffusivityof2.2.2-metal complexes with respect to 2.2.1-metal complexes for silver ions. A sequence of diffusivity D(Ag+)>D(Cu2+)>D(Zn2+) was obtained, but carrier 2.2.1 showed a higher selectivity through copper ions. A sequence of diffusivity D(Cu2+)>D(Zn2+)>D(Ag+) was obtained. The diffusivity was significantly higher when using Celgard 2500 support compared to Celgard 2400 or 2402. Variable metal ion concentrations in the feed phase fluxes almost zero, at less than 10−2 M concentration, were obtained. In the transient state of the transport through the SLM, different molar flow rates at the feed-membrane and membrane-strip interfaces were observed. The selectivity of the interfaces containing 2.2.2 in the separation binary mixtures of ions showed the following separation factors: SFAgZn = 2.50, SFAgCu = 1.64, SFcuZn = 1.42.  相似文献   

11.
《分离科学与技术》2012,47(2):315-327
Abstract

N,N′‐bis(salicylidene)‐1,2‐phenyldiamine was synthesized for examining their ability to extract and transport Cu2+ through a liquid membrane. By using hydrazine sulfate and potassium thiocyanate as reducing agent and acceptor respectively in the receiving phase at the optimum pH of 1.5, the amount of copper transported across the liquid membrane after 3.5 hours was 96%. The selectivity and efficiency of copper transport from aqueous solution containing various metal ions were investigated.  相似文献   

12.
An ion‐exchange resin containing carboxylic acid groups was prepared by reaction of epoxidized soybean oil with triethylene tetramine, followed by hydrolysis of glycerides by using sodium hydroxide solution. The cation exchange capacity of the resins was determined to be 3.50 mequiv/g. The adsorption capacity for Cu2+, Ni2+, and Co2+ on the obtained resin at pH 5.0 was found to be 192, 96, and 78 mg/g, respectively. Effect of pH on the adsorption capacity for copper (II), nickel (II), and cobalt (II) ions were also studied. Cu2+, Ni2+, and Co2+ were adsorbed at a pH above 3. These metal ions adsorbed on the resin are easily eluted by using 1N HCl solution. The selectivity of the resin for Cu2+ from mixtures containing Cu2+/Co2+/Ni2+ ions in the presence of sodium chloride was also investigated © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2386–2396, 2002  相似文献   

13.
FAU-type zeolite membranes with different Si/Al ratios were hydrothermally synthesized on the outer surface of a porous α-Al2O3 support tube. The permeances of the membranes to CO2, CH4 and N2 were then measured at 308 K for single-component and equimolar binary systems. The separation properties were dependent on both the Si/Al ratio and the ion-exchange treatment. For single-component systems, a lower Si/Al ratio resulted in the incorporation of a larger number of Na+ ions. For a CO2-CH4 mixture, both CO2 permeances and CO2/CH4 selectivities were approximately half the values obtained for a binary CO2-N2 mixture. The highest selectivities, obtained using the NaX(1) zeolite membrane, were 28 for CO2/CH4 and 78 for CO2/N2. The RbY, RbX(1) and RbX(2) zeolite membranes showed larger CO2 permeances, compared with those of the original Na-type membranes. Ion-exchange with K+ ions was the most effective for the NaY zeolite membrane in that both the CO2 permeance and the CO2/CH4 selectivity were increased.  相似文献   

14.
A series of blend membranes of poly(phenyl sulfone) (PPSU) with poly(bisphenol A‐co‐4‐nitrophthalic anhydride‐co‐1,3‐phenylenediamine) (PBNPI) were prepared through a solution casting method. This was done to examine the permeation characteristics of oxygen and nitrogen. The effect of the PPSU/PBNPI ratio on the membrane structure and O2/N2 separation performance were investigated. The results show that the permeability increased remarkably with the content of PPSU, whereas the selectivity decreased slightly. To enhance the selectivity of O2/N2, the blend membranes were further crosslinked with a p‐xylylenediamine agent via the immersion method. According to the Fourier transform infrared analysis, the N? H group was formed on the imide group of PBNPI. Therefore, we suggest that during the crosslinking modification, the PBNPI served as a crosslinkable polymer; this resulted in increased crosslinking efficiency with PBNPI content. The high‐resolution X‐ray diffraction and melting point method results show that crosslinking modification improved the selectivity with an acceptable loss in permeability along with increased crystallinity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Dense blend membranes were prepared by blending hydrophilic polymers poly(vinyl alcohol) (PVA) and poly(ethyleneimine) (PEI), which were then crosslinked by glutaraldehyde (GA) in a mixture of solvents under the catalysis of hydrochloric acid (HCl) for the dehydration of tetrahydrofuran (THF) by pervaporation. The effect of experimental parameters such as feed water concentration, permeate pressure, and membrane thicknesses on permeate parameters, i.e., flux and selectivity were determined with feed water concentration less than 40 wt %. The membranes were found to have good potential for breaking the azeotrope of 94 wt % THF with a flux of 1.072 and 0.376 kg/m2 h for plane PVA/PEI and crosslinked PVA/PEI blend membrane, which exhibited high selectivity of 156 and 579 respectively. Selectivity was found to improve with decreasing feed water concentration and increasing membrane thickness, whereas flux decreased correspondingly. High permeate pressure causes a reduction in both flux and selectivity. These effects were clearly elucidated with the aid of the known relationship among plasticization effect, degree of swelling, permeate pressure, and feed water concentration. These blend membranes were also subjected to sorption studies to evaluate the extent of interaction and degree of swelling in pure as well as binary feed mixtures. Further ion exchange capacity studies were carried out for all the crosslinked and uncrosslinked membranes to determine the total number of interacting groups present in the membranes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1152–1161, 2006  相似文献   

16.
In this work, an ion‐imprinted polymeric material based on functionalized phenolic resin was developed for the efficient selective removal of Cu2+ ions from aqueous solution. p‐Aminophenol‐isatin Schiff base ligand (HPIS) was first synthesized and combined with Cu2+ ions to prepare the corresponding complex [Cu(PIS)2]. The Schiff base ligand along with its copper complex was fully investigated and characterized before anchoring in a base‐catalyzed condensation copolymerization with formaldehyde and resorcinol. The Cu2+ ions were removed from the obtained resin construction and the resulting Cu2+ ion‐imprinted material (Cu‐PIS) was employed for the selective extraction of Cu2+ ions under different pH values, initial concentrations and contact time conditions. The optimum pH for the removal process was chosen as 6 and the maximum adsorption capacity was 187 ± 1 mg g–1. Also, the kinetics showed a better fit with the pseudo‐second‐order equations. The selectivity of the prepared Cu‐PIS was also evaluated in a multi‐ionic species containing Ni2+, Cd2+, Pb2+, Co2+ besides Cu2+ ions and the determined parameters confirmed a superior recognition capability toward the imprinted Cu2+ ions. © 2019 Society of Chemical Industry  相似文献   

17.
ET‐g‐PAAc membranes were obtained by radiation grafting of acrylic acid onto poly(tetrafluoroethylene–ethylene) copolymer films using a mutual technique. The ion selectivity of the grafted membranes was determined toward K+, Ag+, Hg2+, Co2+, and Cu2+ in a mixed aqueous solution. The ion‐exchange capacity of the grafted membranes was measured by back titration and atomic absorption spectroscopy. The Hg2+ ion content of the membrane was more than that of either the K+ or Ag+ ions. The presence of metal ions in the membranes was studied by infrared and energy‐dispersive spectroscopy measurements. Scanning electron microscopy of the grafted and metal‐treated grafted membranes showed modification of the morphology of the surface due to the adsorption of K+ and Ag+ ions. No change was observed for the surface of the membrane that was treated with Hg2+ ions. The thermal stability of different membranes was improved more with Ag+ and Hg2+ ions than with K+ ions. It was found that the modified grafted membranes possessed good hydrophilicity, which may make them promising candidates for practical applications, such as for cation‐exchange membranes in the recovery of metals from an aqueous solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2692–2698, 2002  相似文献   

18.
Enhancing the performance of gas separation membranes is one of the major concerns of membrane researchers. Thus, in this study, poly(ether-block-amide) (Pebax)/polyetherimide (PEI) thin-film composite membranes were prepared and their CO2/CH4 gas separation performance was investigated by means of pure and mixed gases permeation tests. To improve the properties of these membranes, halloysite nanotubes (HNT) were added to Pebax layer at different loadings of 0.5, 1, 2, and 5 wt % to form Pebax-HNT/PEI membranes. Scanning electron microscopy, gas sorption, X-ray diffraction, Fourier-transform infrared, and differential scanning calorimetry tests were also performed to investigate the impact of HNT on structure and properties of prepared membranes. Results showed that both CO2/CH4 selectivity and CO2 permeance increased by adding HNT to Pebax layer up to 2 wt %. By increasing HNT loading to 5 wt %, the CO2/CH4 selectivity decreased from 32 to 18, while CO2 permeance increased from 3.25 to 4.2 GPU. Pebax/PEI and Pebax-HNT/PEI membranes containing 2 wt % of HNT were tested using CO2/CH4 gas mixtures at different feed CO2 concentrations and feed pressure of 4 bar. The results showed that with increasing CO2 concentration from 20 to 80 vol %, CO2/CH4 selectivity of Pebax/PEI composite membranes increased by 19%, while, in Pebax-HNT/PEI membrane, CO2/CH4 selectivity decreased by 40%. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48860.  相似文献   

19.
Owing to the self-reducing ability of palladium acetate in solutions, an ethanol solution containing Pd0 particles was prepared and coated in-situ into copper metal–organic framework (Cu-MOF), forming Pd@Cu-MOF in a coated structure. The Pd@Cu-MOF was reduced under N2 or H2 to form carbon-coated Pd-Cu@C. The pyrolysis and carbonization of Cu-MOF and the reduction of Cu2+ were studied. The Cu-MOF under either N2 or H2 was pyrolyzed and carbonized, but the Cu2+ reduction mechanisms were different. The high-temperature carbothermic reduction of Cu2+ under N2 produced Cu0, but during low-temperature reduction under H2, the reducing H2 reduced Cu2+ to Cu0. Furfural hydrogenation experiments showed that compared with H2, the Pd-Cu@C prepared under N2 reduction displayed higher furfural hydrogenation activity. The catalytic activity of Pd-Cu@C prepared from in-situ Pd0 coating was higher than the Pd/Cu@C prepared from the impregnation method. With i-propanol as the solvent, the catalytic hydrogenation of furfural under H2 consisted of direct catalytic hydrogenation with molecular hydrogen as the hydrogen source and catalytic transfer hydrogenation with i-propanol as the hydrogen donor. The catalytic activity of direct catalytic hydrogenation is higher than the catalytic transfer hydrogenation.  相似文献   

20.
The miscibility of carboxymethyl chitosan/polyethylenimine (CMCS/PEI) blends was analyzed by FT-IR, TGA and SEM. Defect-free CMCS/PEI blend membranes were prepared with polysulfone (PSf) ultrafiltration membranes as support layer for the separation of CO2/N2 mixtures. The results demonstrate that the CMCS/PEI blend is miscible, due to the hydrogen bonding interaction between the two targeted polymers. For the blended membrane without water, the permeability of CO2 gas is 3.6 × 10−7 cm3 cm−2 s−1 cmHg−1 and the corresponding separation factor for CO2 and N2 gas is about 33 at the pressure of 15.2 cmHg. Meanwhile, the blended membrane with water has the better permselectivity. The blended membrane containing water with PEI content of 30 wt% has the permeance of 6.3 × 10−4 cm3 cm−2 s−1 cmHg−1 for CO2 gas and a separation factor of 325 for CO2/N2 mixtures at the same feed pressure. This indicates that the CO2 separation performance of the CMCS/PEI blend membrane is higher than that of other facilitated transport membranes reported for CO2/N2 mixture separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号