首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion thruster plumes from a multi-thruster array of different working configurations are simulated by a hybrid fluid-particle software. The particle in cell method is employed to model the transports of ions. The direct simulation Monte Carlo method is used to model momentum and charge exchange (CEX) collisions. The software is based on unstructured grids which make it easy to handle with complex geometry. The results of chamber simulation are compared with experimental data in ion current density and number density, which show good agreements. The maximum difference of current density along the thruster centerline is less than 9.30%. The interaction effects of plumes when multiple thrusters are operating in vacuum are predicted. Distributions of single charged xenon ions are significantly different in the near-field plume flow, however, merge into one in the far downstream region. Moreover, the interaction effect on the spatial distribution of CEX xenon ions is displayed as well.  相似文献   

2.
The performance of an iodine radio ion thruster with a 4 cm diameter(IRIT4) was studied experimentally in this paper. Regulation of the mass flow rates of the iodine propellant is achieved by using a temperature control method of the iodine reservoir. Performance of the thruster using iodine as propellants is obtained at different total thruster powers of 40.6–128.8 W,different grid voltages of 1000–1800 V and the iodine flow rate of 100 μgs~(-1). Results show that thrust and specific impulse increase approximately linearly with the increasing total thruster power and the screen grid voltage. The thrust of 2.32 mN and the specific impulse of 2361 s are obtained at the nominal total thruster power of 95.8 W and the screen grid voltage of 1800 V. It is also indicated that performance of the iodine propellant is comparable to that of the xenon propellant; and a difference between them is that the iodine thrust is slightly higher than xenon when the total thruster power is more than 62 W. At the nominal 95.8 W total thruster power, the thrust values of them are 2.32 m N and 2.15 mN respectively, and the thrust-to-power ratios of them are 24.2 mN kW~(-1) and 23.5 mN kW~(-1), respectively.  相似文献   

3.
To reveal the argon plasma characteristics within the entire region of an electron cyclotron resonance(ECR) ion source, the plasma parameters were diagnosed using a bended Langmuir probe with the filament axis perpendicular to the diagnosing plane. Experiments indicate that,with a gas volume flow rate and incident microwave power of 4 sccm and 8.8 W, respectively,the gas was ionized to form plasma with a luminous ring. When the incident microwave power was above 27 W, the luminous ring was converted to a bright column, the dark area near its axis was narrowed, and the microwave power absorbing efficiency was increased. This indicates that there was a mode transition phenomenon in this ECR ion source when the microwave power increased. The diagnosis shows that, at an incident microwave power of 17.4 W, the diagnosed electron temperature and ion density were below 8 eV and 3?×?10~(17) m~(-3), respectively, while at incident microwave power levels of 30 W and 40 W, the maximum electron temperature and ion density were above 11 eV and 6.8?×?10~(17) m~(-3), respectively. Confined by magnetic mirrors, the higher density plasma region had a bow shape, which coincided with the magnetic field lines but deviated from the ECR layer.  相似文献   

4.
Pulsed plasma thrusters(PPTs) are an attractive form of micro-thrusters due to advantages such as their compactness and lightweight design compared to other electric propulsion systems.Experimental investigations on their plasma properties are beneficial in clarifying the complex process of plasma evolution during the micro-second pulse discharge of a PPT. In this work, the multi-dimensional evolutions of the light intensity of the PPT plasma with wavelength, time, and position were identified. The plasma pressure was obtained using an iterative process with composition calculations. The results show that significant ion recombination occurred in the discharge channel since the line intensities of CII, CIII, CIV, and FII decreased and those of CI and FI increased as the plasma moved downstream. At the center of the discharge channel, the electron temperature and electron density were in the order of 10 000 K and 10~(17) cm~(-3),respectively. These had maximum values of 13 750 K and 2.3?×?10~(17) cm~(-3) and the maximum temperature occurred during the first half-cycle while the maximum number density was measured during the second half-cycle. The estimated plasma pressure was in the order of 10~5 Pa and exhibited a maximum value of 2.69?×?10~5 Pa.  相似文献   

5.
A 2D hybrid-PIC simulation model is proposed to investigate the beam extraction phenomena of the ion thruster. In which the electrons of the plasma sheath upstream the accelerator grid are assumed as particles while the downstream are fluid for improving the calculation efficiency. The ion transparency, plasma sheath formation, ion beam extraction characteristic of a two- and three-grid system have been compared in detail in this paper. From the comparison of the appearing time of the under-perveance phenomena in the two- and three-grid system, it illustrated that the two grid system has the wider operation range of the plasma densities than the three-grid one.  相似文献   

6.
This study presents the Langmuir and Faraday probe measurements conducted to determine the plume characteristics of the BUSTLab microwave electrothermal thruster (MET). The thruster, designed to operate at 2.45 GHz frequency, is run with helium, argon and nitrogen gases as the propellant. For the measurements, the propellant volume flow rate and the delivered microwave power levels are varied. Experiments with nitrogen gas revealed certain operation regimes where a very luminous plume is observed. With the use of in-house-built Langmuir probes and a Faraday probe with guard ring, thruster plume electron temperature, plasma density and ion current density values are measured, and the results are presented. The measurements show that MET thruster plume effects on spacecraft will likely be similar to those of the arcjet plume. It is observed that the measured plume ion flux levels are very low for the high volume flow rates used for the operation of this thruster.  相似文献   

7.
The triple Langmuir probe enables measurements of the transient plasma parameters over time at a point of interest. We demonstrate how these measurements can be easily combined to obtain a visualization of the overall plasma behavior of a pulsed plasma thruster. Through this, it is possible to identify features in the expansion of the plasma such as the canting angle of the plume. We also identified the early arrival of a negatively canted low-density plasma plume. The 2D profiles also reveal data that would otherwise be obscured by other planes in optical measurements.  相似文献   

8.
An ECR ion thruster with a diameter of 5 cm has been developed and tested.Four different antenna positions were experimentally and numerically investigated,and the results suggest that the optimal location for the antenna is where it is perfectly surrounded by the electron cyclotron resonance layer.We also evaluated two different antenna configurations,and found that the star configuration is preferable to the circular configuration,and also that the circular antenna is only 40% as efficient as the star antenna.The experimental curve of the ion beam current and voltage agrees with the fitting results from the analytic solution.The simulation of the magnetic topology in the discharging chamber with different back yoke heights indicates that it needs to be further verified.  相似文献   

9.
The distribution of the thermal effects of the ion thruster plume are essential for estimating the influence of the thruster plume, improving the layout of the spacecraft, and for the thermal shielding of critical sensitive components. In order to obtain the heat flow distribution in the plume of the LIPS-200 xenon ion thruster, an experimental study of the thermal effects of the plume has been conducted in this work, with a total heat flow sensor and a radiant heat flow sensor over an axial distance of 0.5–0.9 m and a thruster angle of 0°–60°. Combined with a Faraday probe and a retarding potential analyzer, the thermal accommodation coefficient of the sensor surface in the plume is available. The results of the experiment show that the xenon ion thruster plume heat flow is mainly concentrated within a range of 15°. The total and radial heat flow of the plume downstream of the thruster gradually decreases along the axial and radial directions, with the corresponding values of 11.78 kW m−2 and 0.3 kW m−2 for the axial 0.5 m position, respectively. At the same position, the radiation heat flow accounts for a very small part of the total heat flow, approximately 3%–5%. The thermal accommodation factor is 0.72–0.99 over the measured region. Furthermore, the PIC and DSMC methods based on the Maxwell thermal accommodation coefficient model (EX-PWS) show a maximum error of 28.6% between simulation and experiment for LIPS-200 ion thruster plume heat flow, which, on the one hand, provides an experimental basis for studying the interaction between the ion thruster and the spacecraft, and on the other hand provides optimization of the ion thruster plume simulation model.  相似文献   

10.
The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed.Electrodeless plasma thrusters are potentially more durable than presently deployed thrusters that use electrodes such as gfidded ion,Hall thrusters,arcjets and resistojets.Like other plasma thrusters,electrodeless thrusters have the advantage of reduced fuel mass compared to chemical thrusters that produce the same thrust.The status of electrodeless plasma thrusters that could be used in communications satellites and in spacecraft for interplanetary missions is examined.Electrodeless thrusters under development or planned for deployment include devices that use a rotating magnetic field;devices that use a rotating electric field;pulsed inductive devices that exploit the Lorentz force on an induced current loop in a plasma;devices that use radiofrequency fields to heat plasmas and have magnetic nozzles to accelerate the hot plasma and other devices that exploit the Lorentz force.Using metrics of specific impulse and thrust efficiency,we find that the most promising designs are those that use Lorentz forces directly to expel plasma and those that use magnetic nozzles to accelerate plasma.  相似文献   

11.
In order to further improve the propulsion performance of pulsed plasma thrusters for space micro propulsion, a novel laser ablation pulsed plasma thruster is proposed, which separated the laser ablation and electromagnetic acceleration. Optical emission spectroscopy is utilized to investigate the plasma characteristics in the thruster. The spectral lines at different times,positions and discharge intensities are experimentally recorded, and the plasma characteristics in the discharge channel are concluded through analyzing the variation of spectral lines. With the discharge energy of 24 J, laser energy of 0.6 J and the use of aluminum propellant, the specific impulse and thrust efficiency reach 6808 s and 70.6%, respectively.  相似文献   

12.
In this study,a laser-assisted pulsed plasma thruster (LA-PPT) with a novel configuration is proposed as an electric propulsion thruster which separates laser ablation and electromagnetic acceleration.Owing to the unique structure of the thruster,metals can also be used as propellants,and a higher specific impulse is expected.The ablation quality,morphology,and plume distribution of various metals (aluminium alloy,red copper,and carbon steel) with different laser energies were studied experimentally.The ablation morphology and plume distribution of red copper were more uniform,as compared to those of other metals,and the ablation quality was higher,indicating its greater suitability for LA-PPT.The plume generated by nanosecond laser ablation of aluminium alloy expanded faster,which indicated that the response time of the thruster with aluminium alloy as the propellant was shorter.In addition,when the background pressure was 0.005 Pa,an obvious plume splitting phenomenon was observed in the ablation plume of the pulsed laser irradiating aluminium alloy,which may significantly reduce the utilisation rate of the propellant.  相似文献   

13.
Plasma in the discharge channel of a pulsed plasma thruster (PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed to model the particle movement and collisions and investigate the plasma properties and acceleration process. Temporal and spatial variations of the electron density distribution and the ion velocity between electrodes are calculated and analyzed in detail. The computational results of the electron number density, which is in the order of 1023 m−3, show good agreements with experimental results of a PPT named ADD SIMP-LEX. The ion velocity distributions along the center line of the channel lead to a comprehensive understanding of ions accelerated by electromagnetic field. The electron distributions of PPT with discharge voltages varying from 1300 to 2000 V are compared. The diffusion of electrons presents strong dependency on discharge voltage and implies higher degree of ionization for higher voltage.  相似文献   

14.
At present,spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT),which are known to be life-limiting components due to plasma corrosion and carbon deposition.A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions.We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle.The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes,contributing to a reduction in the electrode breakdown voltage.Additionally,it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments.The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases,and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity.The induction-triggered coaxial PPT we propose has a simplified trigger structure,and it is an effective attempt to optimize the micro-satellite thruster.  相似文献   

15.
Erosion can influence cathode life, and is thus considered to be one of the main factors limiting the application of applied-field magnetoplasmadynamic thrusters. In this paper, erosion sites on graphite cathodes are studied so as to identify the influence of applied magnetic field and the ratio of propellant mass flow rate supplied from cathode and anode. The experiment results show that the application of applied magnetic field can significantly reduce the erosion rate of the cathode compared to that without magnetic field. The erosion sites on the cathode vary with the relative position of the convergent-divergent magnetic field, and are mainly distributed in the divergent part of the field. The erosion sites on the cathodes are found to be related to the propellant supply. The decreasing anode mass flow rate enlarges the range of erosion. These results are much helpful for the analysis of cathode erosion site location since they provide evidences of erosion mechanisms and point out the directions for further research.  相似文献   

16.
A novel laser-assisted pulsed plasma thruster (LA-PPT) is proposed as an electric propulsion thruster, which separates laser ablation and electromagnetic acceleration. It aims for a higher specific impulse than that achieved with conventional LA-PPTs. Owing to the short-time discharge and the novel configuration, the physical mechanism of the discharge is unclear. Time and spatial-resolved optical emission spectroscopy was applied to investigate the variation in the plasma properties in the thruster discharge channel. The plasma species, electron temperature, and electron density were obtained and discussed. Our investigation revealed that there were Hα, Hβ, Hγ, Hε atoms, C I, C II, C III, C IV, Cl I, Cl II particles, and a small amount of CH, C3, C2, H2 neutral molecular groups in the plasma. The electron temperature of the discharge channel of the thruster was within 0.6–4.9 eV, and the electron density was within (1.1–3.0) $\times $ 1018 cm−3, which shows that the optical emission spectroscopy method is to measure the electron excitation temperature and electron density in heavy particles. But the Langmuir probe method is to measure the temperature and density of free electrons. The use of laser instead of spark plug as the ignition mode significantly changed the plasma distribution in the discharge channel. Unlike the conventional PPT, which has high electron density near the thruster surface, LA-PPT showed relatively large electron density at the thruster outlet, which increased the thruster specific impulse. In addition, the change in the ignition mode enabled the electron density in the LA-PPT discharge channel to be higher than that in the conventional PPT. This proves that the ignition mode with laser replacing the spark plug effectively optimised the PPT performance.  相似文献   

17.
Beam flatness is an important parameter that determines the performance and the lifetime of a gridded ion thruster.To improve the beam flatness of the 30 cm (LIPS-300) ion thruster,variable aperture ion optics that adapts to the decreasing ion density as the radius increases is proposed.It is the ion optics that the screen grid surface is divided into several zones,where the aperture diameter in each zone is determined by the ion density and the electron temperature upstream of the screen grid.The beam current density in the central area is artificially reduced.A particle in cell-Monte Carlo collision model is applied in this work to investigating the effect of variable aperture on the perveance and the maximum beam current per aperture by simulating the extraction,focusing and acceleration processes of ions.Taking into account the engineering implementability,the screen grid surface is divided into four zones.The hole diameter in each zone is decreased from 1.95 mm to 1.8 mm,1.9 mm,1.8 mm and 1.7 mm,respectively.The simulation results show that the maximum ion density in the center area of grid is decreased by 10.6% and 6.99%,while it is increased by 6.49% and 22.3% in the edge region,respectively.The beam flatness of the variable aperture ion optics is improved from 0.69 to 0.88.The erosion rate is decreased by 31.9%,but the total beam current is also decreased by 7.15%.The simulation results can provide a valuable reference of the development of the ion thruster.  相似文献   

18.
To achieve a better insight into the far-field plasma spatial distribution and evolution characteristics of the 300 W class low-power Hall thruster (LHT) for commercial aerospace applications,a dedicated and integrated plasma diagnostic system composed of seventeen Faraday cups (FC) and two triple Langmuir probes (TLP) is established to investigate the time-averaged in situ spatial distribution characteristics of far-field ions and electrons.The ion current density (ICD),plasma potential,plasma density,and electron temperature at 1000 mm downstream of 300 W class LHT for commercial aerospace applications in the azimuthal angle range of-90° to 90° were investigated under the conditions of different anode mass flow rates and discharge voltages.The results demonstrated that ICD,beam divergence angle,and mass utilization efficiency increased with increasing anode mass rate.The double-wings phenomenon was observed in the spatial distribution of ICD at large angles from the thruster axis,which is attributed to charge exchange collisions at increasing vacuum backpressure.The plasma electron temperature,electron density,and plasma potential parameters derived from the TLP decreased rapidly in the angle range from 0° to 30° and did not exhibit significant variations above 30°,which was also in good agreement with the results of the measured divergence angle of the FC.The discrepancy of average ion speed was calculated.The maximum error is better than 31.5%which checks the consistency between the TLP's results and that of FC to some extent.  相似文献   

19.
In this study,we report a laser interferometry experiment for the online-diagnosing of a laserproduced plasma.The laser pulses generating the plasma are ultra-fast(30 femtoseconds),ultraintense(tens of Terawatt) and are focused on a helium gas jet to generate relativistic electron beams via the laser wakefield acceleration(LWFA) mechanism.A probe laser beam(λ?=?800 nm) which is split-off the main beam is used to cross the plasma at the time of arrival of the main pulse,allowing online plasma density diagnostics.The interferometer setup is based on the No Marski method in which we used a Fresnel bi-prism where the probe beam interferes with itself after crossing the plasma medium.A high-dynamic range CCD camera is used to record the interference patterns.Based upon the Abel inversion technique,we obtained a 3D density distribution of the plasma density.  相似文献   

20.
The application and development of pulsed plasma thrusters(PPTs) in recent years are reviewed in this paper. The advantages of PPTs are discussed. The schematics, propulsion performance parameters and key physical processes of PPTs are described. Some representative PPT products and flight systems developed in recent years are presented to show the performance of the PPT.Studies about how electrode structures, discharge circuits, propellant materials, energy discharge method, propellant feed method, ignition method and number of thruster heads influence the PPT performance are presented and analyzed. The ignitor design method, ignition process and propellant carbonization are introduced to discuss the reliability and lifetime issues in PPTs. The modeling methods of the discharge circuit, as well as ablation, ionization and acceleration in PPTs are presented. Finally, the application of PPTs in the future is analyzed and some suggestions for PPT development are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号