共查询到20条相似文献,搜索用时 15 毫秒
1.
Motion and Splitting of Vacuum Arc Column in Transverse Magnetic Field Contacts at Intermediate—Frequency
下载免费PDF全文

Arc motion and splitting of vacuum arc at intermediate frequency(400-800 Hz) were investigated under transverse magnetic field(TMF).The experiment was performed on cup-type TMF contacts with contact diameter of 40 mm and a contact gap of 4 mm in a single-frequency circuit.With high-speed photography we characterized the arc appearance at different arc currents from 3.3 kA-rms to 10 kA-rms at intermediate frequencies.As arc current increases from3.3 kA-rms to 10 kA-rms the arc appearance changes obviously.When current value is 3.3 kArms(current frequency 400-800 Hz),there is almost no splitting arc;when the current exceeds5 kA-rms(current frequency 400-800 Hz),the arc rotates at a speed above 20 m/s,accompanied by an observable splitting arc.The splitting arc could be observed at different frequencies and the arc-voltage had no noises when splitting occurred.The motion direction and the velocity of arc column were studied.Finally,the formation of a split arc was discussed. 相似文献
2.
Characteristics of the arc voltage under different profiles of axial magnetic field were investigated experimentally in a detachable vacuum chamber with five pairs of specially designed electrodes generating both bell-shaped and saddle-shaped mafnetic field profile. The arc column and cathode spot images were photographed by a high speed digital camera. The dependence of the arc voltage on arcing evolution is analyzed. It is indicated that the axial magnetic field profile could affect the arc behaviors significantly, and the arc voltage is closely related to the arc light intensity. 相似文献
3.
Simulation Research of Magnetic Constriction Effect and Controlling by Axial Magnetic Field of Vacuum Arc 总被引:2,自引:0,他引:2
Based on magnetohydrodynamic (MHD) model of vacuum arc, the computer simulation of vacuum arc was carried out in this paper. In the MHD model, mass conservation equation, momentum conservation equations, energy conservation equations, generalized ohm‘s law and Maxwell equation were considered. MHD equations were calculated by numerical method, and the distribution of vacuum arc plasma parameters and current density were obtained. Simulation results showed that the magnetic constriction effect of vacuum arc is primarily caused by the Hall effect. In addition, the inhibition of axial magnetic field (AMF) on constriction of vacuum arc was calculated and analyzed. 相似文献
4.
Recent results on the distribution of vacuum arc cathode spots (CSs) in nonuniform axial magnetic field (AMF) are presented. Based on previous studies, we deem that two contrary influences of AMF, inward effect and outward effect, are attributed to CSs distribution. With this notion, we have analyzed the controlling effectiveness of nonuniform AMF on CSs distribution. Experiments were conducted in a detachable vacuum chamber with iron-style AMF electrodes. Images of vacuum arc column and the distribution of CSs were photographed with a high-speed charge coupled device (CCD) camera. Experimental results agreed well with the theoretical analysis. 相似文献
5.
In the condition of the 3 mm gap, experiments for 360 Hz intermediate-frequency vacuum arc are carried out in interrupters with the diameters being 41 mm and with the contact materials being CuCr50 and Cu-W-WC alloy respectively. The results indicate that the contacts material is closely related to the breaking capacity of the vacuum interrupters and characteristics of an intermediate-frequency vacuum arc. For contacts with the same diameter, the breaking capacity of CuCr50 is better than that of Cu-W-WC. When the current fails to be interrupted, the arcs overflow the gap and present irregular performances in the first half wave. Consequently a voltage spike appears. More macroscopic metal droplets can be seen in the arc column between CuCr50 contacts because of the lower melting point. It is observed that the droplet emission is much more severe during arc reignition than that in the first half wave. It is much more conspicuous that the high frequency arc voltage noises appear in Cu-W-WC contacts when the vacuum arcs reignite, for higher temperature and stronger electronic emission ability of Cu-W-WC contacts. 相似文献
6.
《等离子体科学和技术》2016,18(3):287-291
A 3D Magnetohydrodynamics (MHD) arc model in conjunction with an arc move¬ment model is applied to simulate the arc rotation as well as to solve its effect on the pressure in an auto-expansion circuit breaker. The rotation of the arc driven by an external electromagnetic force is simulated in the case with 200 kA of the short circuit current and 16 ms of arc duration. The arc rotating process and the speed of arc rotation have been obtained in the simulation. A comparison of the pressure in the expansion volume with and without an external magnetic field has been carried out based on the calculation results of two cases. The results of the simulation reveal that the arc rotation, which causes more energy exchange between the arc and its surrounding gas, can evidently bring about the pressurization in the expansion volume, which would contribute to more effective arc quenching at current zero and further reducing operation power. 相似文献
7.
In this study, the changes of a vacuum arc’s appearance were observed and the volt-ampere characteristics of the vacuum arc at intermediate frequency were analyzed under a transverse magnetic field (TMF). The TMF and phase shift time were calculated by using the TMF contact model and the large phase shift of the magnetic field at a higher frequency was conductive to the dispersion process of residual plasma. The arc velocity was higher at 800 Hz than at 400 Hz. It can be inferred that TMF will encourage arc movement at 800 Hz. Moreover, the arc movement has an impact on the arc voltage. Because of the increasing length of the arc column with a high arc velocity, the elongated arc causes the arc voltage to increase. Specifically, the volt-ampere characteristics of the vacuum arc are divided into three stages in this paper. The higher the frequency, the greater the initial rate of rise in the arc voltage and the larger the area surrounded by arc volt-ampere characteristics. The correlations between the arc voltage and the amplitude and frequency of the current are also presented. 相似文献
8.
A particle-in-cell simulation is conducted to investigate the plasma acceleration process in a micro-cathode vacuum arc thruster. A coaxial electrode structure thruster with an applied magnetic field configuration is used to investigate the effects of the distribution of the magnetic field on the acceleration process and the mechanism of electrons and ions. The modeling results show that due to the small Larmor radius of electrons, they are magnetized and bound by the magnetic field lines to form a narrow electron channel. Heavy ions with a large Larmor radius take a long time to keep up with the electron movement. The presence of a magnetic field strengthens the charge separation phenomenon. The electric field caused by the charge separation is mainly responsible for the ion acceleration downstream of the computation. The impact of variations in the distribution of the magnetic field on the acceleration of the plasma is also investigated in this study, and it is found that the position of the magnetic coil relative to the thruster exit has an important impact on the acceleration of ions. In order to increase the axial velocity of heavy ions, the design should be considered to reduce the confinement of the magnetic field on the electrons in the downstream divergent part of the applied magnetic field. 相似文献
9.
The arcing process greatly affects the breaking ability after current zero. The instability stage is the transition stage from the ignition to the movement stage, which affects the arc movement characteristics. In this paper, the arc characteristics during the instability stage on spiral-type contacts were investigated using a high-speed video camera. A multi-column parallel instability mode and a single-column instability mode were found during the instability stage. The arc appearance and constriction degree changed rapidly. The arc voltage usually increased accompanied by fluctuations. In addition, it was found that the current significantly influenced the arc mode and duration in the instability stage. With increased peak current, the probability of a single-column instability mode increased, and the fluctuation range and average time decreased. 相似文献
10.
To improve the limiting current interruption capability and minimizing vacuum interrupter with axial magnetic field (AMF) electrodes, it is significant to investigate the vacuum arc behaviours between the contacts. AMF distributions of the slot type electrodes were studied by both numerical analysis and experiments. Furthermore, the behaviours of vacuum arcs for different parameters of the slot type AMF electrodes were investigated by using high-speed CCD camera. The influences of gap distance, contact diameter and phase shift time between AMF and arc current on the vacuum arc were investigated. The results provide a reference for research and development of vacuum interrupters with slot type or other types of AMF electrode. 相似文献
11.
Secondary arc discharge is a complicated physical phenomenon and one of the key fundamental issues associated with ultra high voltage (UHV) half-wavelength transmission lines (HWTL). With the establishment of a physicM simulation platform for the HWTLs, experiments were carried out regarding the motion and extinction characteristics of secondary arcs. The cathode arc root and the anode arc root were found to show an obvious polarity effect while the arc column was moving in a spirM, due to their different motion mechanisms. The extinction behavior was also recorded and experiments were designed with different compensation conditions. Results show that the arcing time can be greatly reduced if there exists an electrical compensation network. The research provides fundamentals for understanding the physics involved, especially the motion and extinction mechanisms of the secondary arcs. 相似文献
12.
Chao CHEN 《等离子体科学和技术》2022,24(11):115506
Ultrasound-magnetic field coaxial hybrid Gas Tungsten Arc Welding (U-M-GTAW) is proposed as a means to control arc characteristics. The arc characteristics and the mechanism to change them, in an ultrasound-magnetic field coaxial hybrid GTAW, were studied by both experimental and theoretical analyses. The results showed that a periodic rotation and compression of the arc shape were obtained in U-M-GTAW and the arc energy was also enhanced. The most obvious compression of the arc shape in U-M-GTAW was obtained, compared with GTAW, M-GTAW and U-GTAW. At the same time, a periodic rotation of the arc was observed in U-M-GTAW. The geometric parameters of the arc shape in U-M-GTAW are reduced more than double compared with traditional GTAW. The arc voltage in the hybrid GTAW was increased, especially in the U-M-GTAW. The electromagnetic force and acoustic radiation force were the main factors for the change of arc characteristics in the U-M-GTAW. 相似文献
13.
在90°磁过滤管道和MEVVA源阴极之间加30~60V的正偏压可使磁过滤管道起到阴极弧放电第二阳极的作用.在此情况下,就磁过滤管道磁场对MEVVA源阳极-阴极和磁过滤管道-阴极两个回路弧放电和磁过滤管道等离子体传输效率的影响进行了实验研究.研究结果表明随磁过滤磁场升高,磁过滤管道和阴极之间的弧放电规模降低,系统的等离子体传输效率升高,但对MEVVA源阳极和阴极之间的弧放电规模影响不大. 相似文献
14.
A 3-phase a.c. arc plasma reactor with large volume plasma has been developed for the synthesis of new carbon nano-structures. One of the main characteristics of the plasma system is related to the absence of a fixed neutral point. This gives rise to a rich and complex phenomenology related to instabilities and arc motion since the arcs are "burning" freely in the gas flow between the three electrodes.
This paper is dedicated to the analysis of the behavior of such a system under typical conditions using argon and nitrogen as plasma gases. A classification of are configuration, arc commutating, arc interaction, arc motion and arc instabilities are discussed based on ultra high-speed cine camera analysis. A simple model describing the time evolution of the system is also presented and compared with the experimental measurements. The results show that an adequate control could allow the improvement of the overall system. 相似文献
15.
《等离子体科学和技术》2019,21(12):125406-66
A numerical simulation is conducted to investigate arc–anode attachment behavior, especially the formation mechanism of the constricted arc attachment mode for the water-cooled anode of wall-stabilized transferred argon arcs. Argon molecular ions and the corresponding kinetic processes are included to the finite-rate chemistry model in order to capture the chemical nonequilibrium characteristics of the arc near the anode region. Modeling results show that constricted and diffusive arc–anode attachments can be self-consistently obtained at different arc currents while keeping other parameters unchanged. The dominant kinetic processes contributing to ionization and recombination in the arc center and fringes are presented. The results show that in arc fringes and the arc attachment region, molecular ion recombination plays an important role which leads to the rapid loss of electrons. The radial evolution of the production, loss and transport processes of electrons is further analyzed. It is found that for the constricted arc attachment mode, both the recombination and convection transport caused by the anode jet result in the loss of electrons at the arc fringes, which leads to the shrinkage of the arc column at the anode. The formation of the anode jet is due to the combined action of radial and axial Lorentz forces in the anode region. 相似文献
16.
This paper mainly focuses on the influence of three kinds of media: air, air-10%PA (Nylon) and air-10% POM (polyoxymethylene) on low-voltage circuit breaker arcs. A threedimensional (3-D) model of arc motioa under the effect of external magnetic field is built based on magnetohydrodynamics (MHD) equations. By adopting the commercial computational fluid dynamics (CFD) package based on the control-volume method, the above MHD equations are solved. For the media of air-10%PA and air-10%POM, the distributions of stationary temperature and electrical potential and the transient motion processes are compared with those of air arc. The research shows that both air-10%PA and air -10% POM can cool the arc plasma and the former is more effective. Both of them can increase the stationary voltage as well. Moreover, the presence of the two mixtures can accelerate the arc motion toward the quenching area and ensures the arc quenched in time. 相似文献
17.
XIU Shixin 《等离子体科学和技术》2011,13(3):376-380
Influence of the initial opening speed on the characteristics of drawn vacuum arcs for axial magnetic field(MF) vacuum interrupters (VIs) is studied using a high-speed charge- coupled device (CCD) camera. Two values of initial opening speed, 0.5 m/s and 1.5 m/s, were set to make a comparative study. The cup-type electrode was made of Cu-Cr (50%-50% in weight) with a diameter of 30 mm and a gap distance between electrodes of 10 mm. The results show that the transition time decreases by 0.5 ms when the initial opening speed increases from 0.5 m/s to 1.5 m/s at a peak current of 2.5 kA, while the transition time decreases by 1.0 ms when the initial opening speed increases from 0.5 m/s to 1.5 m/s at a peak current of 5.0 kA. The reason why the duration of the transition arc mode decreases is that the e®ect of electromagnetic force and Coulomb force among arcs is increased when the initial opening speed increases. 相似文献
18.
19.
Results observed experimentally are presented, about the DC arc plasma jets and their arc-root behaviour generated at reduced gas pressure without or with an applied magnetic field. Pure argon, argon-hydrogen or argon-nitrogen mixture was used as the plasma-forming gas. A specially designed copper mirror was used for a better observation of the arc-root behaviour on the anode surface of the DC non-transferred arc plasma torch. It was found that in the cases without an applied magnetic field, the laminar plasma jets were stable and approximately axisymmetrical. The arc-root attachment on the anode surface was completely diffusive when argon was used as the plasma-forming gas, while the arc-root attachment often became constrictive when hydrogen or nitrogen was added into the argon. As an external magnetic field was applied, the arc root tended to rotate along the anode surface of the non-transferred arc plasma torch. 相似文献
20.
The attachment of the DC arc on the anode is usually affected by surface morphology such as protrusions due to ablation or melting deformation.A three-dimensional thermodynamic and chemical non-equilibrium model is used to numerically simulate the effect of artificially assumed surface protrusions on the arc anode attachment.The numerical simulation results show that the arc deflects toward the protrusions on the anode and attaches to them in a constricted mode,resulting in an increase in the temperature of the arc attachment region.The analysis shows that the presence of protrusion on the anode surface changes the electric field distribution,intensifies the degree of thermodynamic and chemical non-equilibrium in its vicinity,further influences the chemical kinetic process of the plasma around it,which is the main reason for the deflection of the arc toward the protrusions and the arc anode attachment in a constricted mode.In order to verify the numerical simulation results,verification experiments are also performed using similar size scale anode protrusion,and the results showed that the presence of protrusion can indeed cause the deflection of the arc and even cause the ablation of the protrusion. 相似文献