首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There exists strong interaction between the plasma and channel wall in the Hall thruster,which greatly affects the discharge performance of the thruster.In this paper,a two-dimensional physical model is established based on the actual size of an Aton P70 Hall thruster discharge channel.The particle-in-cell simulation method is applied to study the influences of segmented low emissive graphite electrode biased with anode voltage on the discharge characteristics of the Hall thruster channel.The influences of segmented electrode placed at the ionization region on electric potential,ion number density,electron temperature,ionization rate,discharge current and specific impulse are discussed.The results show that,when segmented electrode is placed at the ionization region,the axial length of the acceleration region is shortened,the equipotential lines tend to be vertical with wall at the acceleration region,thus radial velocity of ions is reduced along with the wall corrosion.The axial position of the maximal electron temperature moves towards the exit with the expansion of ionization region.Furthermore,the electron-wall collision frequency and ionization rate also increase,the discharge current decreases and the specific impulse of the Hall thruster is slightly enhanced.  相似文献   

2.
The distribution of the thermal effects of the ion thruster plume are essential for estimating the influence of the thruster plume, improving the layout of the spacecraft, and for the thermal shielding of critical sensitive components. In order to obtain the heat flow distribution in the plume of the LIPS-200 xenon ion thruster, an experimental study of the thermal effects of the plume has been conducted in this work, with a total heat flow sensor and a radiant heat flow sensor over an axial distance of 0.5–0.9 m and a thruster angle of 0°–60°. Combined with a Faraday probe and a retarding potential analyzer, the thermal accommodation coefficient of the sensor surface in the plume is available. The results of the experiment show that the xenon ion thruster plume heat flow is mainly concentrated within a range of 15°. The total and radial heat flow of the plume downstream of the thruster gradually decreases along the axial and radial directions, with the corresponding values of 11.78 kW m−2 and 0.3 kW m−2 for the axial 0.5 m position, respectively. At the same position, the radiation heat flow accounts for a very small part of the total heat flow, approximately 3%–5%. The thermal accommodation factor is 0.72–0.99 over the measured region. Furthermore, the PIC and DSMC methods based on the Maxwell thermal accommodation coefficient model (EX-PWS) show a maximum error of 28.6% between simulation and experiment for LIPS-200 ion thruster plume heat flow, which, on the one hand, provides an experimental basis for studying the interaction between the ion thruster and the spacecraft, and on the other hand provides optimization of the ion thruster plume simulation model.  相似文献   

3.
A high-speed charge-coupled device camera was used to capture images of the plume and acceleration channel of a Hall effect thruster during ignition at different discharge voltages. To better understand the influence of changes in the discharge voltage on the plasma parameters during thruster ignition, a particle-in-cell numerical model was used to calculate the distribution characteristics of the ion density and electric potential at different ignition moments under different discharge voltages. The results show that when the discharge voltage is high, the ion densities in the plume and acceleration channel are significantly higher at the initial phase of thruster ignition; with the gradual strengthening of the ignition process, the propellant avalanche ionization during thruster ignition occurs earlier and the pulse current peak increases. The main reason for these phenomena is that the change in the discharge voltage results in different energy acquisitions of the emitted electrons entering the thruster channel.  相似文献   

4.
The effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron discharge was investigated. The ion velocity distribution function(IVDF), the maximum ion energy and ion flux density were measured at the substrate by a retarding field energy analyzer. The sputtering behavior was investigated by the electric characteristics of target and bias discharges using voltage–current probe technique. It was found that the substrate bias led to the decrease of sputtering power, voltage and current with the amplitude 7.5%. The substrate bias also led to the broadening of IVDFs and the increase of ion flux density, made the energy divergent of ions impacting the substrate. This effect was further enhanced by increasing bias power and reducing discharge pressure.  相似文献   

5.
The influences of the low-emissive graphite segmented electrode placed near the channel exit on the discharge characteristics of a Hall thruster are studied using the particlein-cell method.A two-dimensional physical model is established according to the Hall thruster discharge channel configuration.The effects of electrode length on the potential,ion density,electron temperature,ionization rate and discharge current are investigated.It is found that,with the increasing of the segmented electrode length,the equipotential lines bend towards the channel exit,and approximately parallel to the wall at the channel surface,the radial velocity and radial flow of ions are increased,and the electron temperature is also enhanced.Due to the conductive characteristic of electrodes,the radial electric field and the axial electron conductivity near the wall are enhanced,and the probability of the electron-atom ionization is reduced,which leads to the degradation of the ionization rate in the discharge channel.However,the interaction between electrons and the wall enhances the near wall conductivity,therefore the discharge current grows along with the segmented electrode length,and the performance of the thruster is also affected.  相似文献   

6.
In this paper,a two-dimensional physical model is established according to the discharging process in the Hall thruster discharge channel using the particle-in-cell method.The influences of discharge voltage on the distributions of potential,ion radial flow,and discharge current are investigated in a fixed magnetic field configuration.It is found that,with the increase of discharge voltage,especially during 250-650 V,the ion radial flow and the collision frequency between ions and the wall are decreased,but the discharge current is increased.The electron temperature saturation is observed between 400-450 V and the maximal value decreases during this region.When the discharge voltage reaches 700 V,the potential distribution in the axis direction expands to the anode significantly,the ionization region becomes close to the anode,and the acceleration region grows longer.Besides,ion radial flow and the collision frequency between ions and the wall are also increased when the discharge voltage exceeds 650 V.  相似文献   

7.
A two-and three-dimensional velocity space axisymmetric hybrid-PIC model of Hall thruster discharge called Hybrid2D has been developed.The particle-in-cell(PIC) method was used for neutrals and ions(heavy species),and fluid dynamics on a magnetic field-aligned(MFA) mesh was used for electrons.A time-saving method for heavy species moment interpolation on a MFA mesh was developed.The method comprises using regular rectangle and irregular triangle meshes,connected to each other on a pre-processing...  相似文献   

8.
《等离子体科学和技术》2019,21(12):125402-32
A hollow cathode is the electronic source and neutralizer of the Hall thruster and an ion thruster.When the orbit of an all-electric propulsion satellite changes from 100 km to 36 000 km, the backpressure changes by two to three orders of magnitude. In this paper, the influence of the backpressure on the discharge characteristics of the hollow cathode has been studied experimentally in the so-called diode configuration. With the increase in the backpressure, the anode voltage decreases gradually, and the amplitude of the current oscillation decreases significantly. Additionally, the plasma is relatively stable, the most probable ion energy and the width of the ion energy distribution reduces, and the electron distribution function inclines toward the Maxwell distribution under high backpressure. The analysis results show that the backpressure affects the gas ionization and the ionic acoustic turbulence, which also affects the discharge characteristics of the hollow cathode.  相似文献   

9.
Low-power Hall thruster(LHT) generally has poor discharge efficiency characteristics due to the large surface-to-volume ratio.Aiming to further refine and improve the performance of 300 W class LHT in terms of thrust and efficiency,and to obtain the most optimal operating point,the experimental study of the discharge characteristics for three different anode positions was conducted under the operation of various discharge voltages(100-400 V) and anode mass flow rates(0.65 mg·s-1 and 0...  相似文献   

10.
To date,the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied.Hence,an experimental study was conducted on a 1.35 kW magnetically shielded Hall thruster with a xenon propellant.Different magnetic field lines were chosen,and corresponding tangentially matched channel walls were manufactured and utilized.The results demonstrate that high performance and a qualified anti-sputtering effect cannot be achieved simultaneously.When the magnetic field lines that match the chamfered wall have a strength at the channel centerline of less than 12% of the maximum field strength,the channel wall can be adequately protected from ion sputtering.When the magnetic field lines have a strength ratio of 12%-20%,the thruster performance is high.These findings provide the first significant quantitative design reference for the match between the magnetic field line and chamfered channel wall in magnetically shielded Hall thrusters.  相似文献   

11.
The distribution of magnetic field in Hall thruster channel has significant effect on its discharge process and wall plasma sheath characteristics. By creating physical models for the wall sheath region and adopting two-dimensional particle in cell simulation method, this work aims to investigate the effects of magnitude and direction of magnetic field and ion velocity on the plasma sheath characteristics. The simulation results show that magnetic field magnitudes have small impact on the sheath potential and the secondary electron emission coefficient, magnetic azimuth between the magnetic field direction and the channel radial direction is proportional to the absolute value of the sheath potential, but inversely proportional to the secondary electron emission coefficient. With the increase of the ion incident velocity, secondary electron emission coefficient is enhanced, however, electron density number, sheath potential and radial electric field are decreased. When the boundary condition is determined, with an increase of the sinmlation area radial scale, the sheath potential oscillation is aggravated, and the stability of the sheath is reduced.  相似文献   

12.
Ion thruster plumes from a multi-thruster array of different working configurations are simulated by a hybrid fluid-particle software. The particle in cell method is employed to model the transports of ions. The direct simulation Monte Carlo method is used to model momentum and charge exchange (CEX) collisions. The software is based on unstructured grids which make it easy to handle with complex geometry. The results of chamber simulation are compared with experimental data in ion current density and number density, which show good agreements. The maximum difference of current density along the thruster centerline is less than 9.30%. The interaction effects of plumes when multiple thrusters are operating in vacuum are predicted. Distributions of single charged xenon ions are significantly different in the near-field plume flow, however, merge into one in the far downstream region. Moreover, the interaction effect on the spatial distribution of CEX xenon ions is displayed as well.  相似文献   

13.
The effect of the frequency and power of the bias applied to the substrate on plasma properties in 60 MHz(VHF) magnetron sputtering was investigated.The plasma properties include the ion velocity distribution function(IVDF),electron energy probability function(EEPF),electron density n_e,ion flux Γ_i,and effective electron temperature T_(eff).These parameters were measured by a retarding field energy analyzer and a Langmuir probe in the 60 MHz magnetron sputtering,assisted with 13.56 MHz or 27.12 MHz substrate bias.The 13.56 MHz substrate bias led to broadening and multi-peaks IVDFs,Maxwellian EEPFs,as well as high electron density,ion flux,and low electron temperature.The 27.12 MHz substrate bias led to a further increase of electron density and ion flux,but made the IVDFs narrow.Therefore,the frequency of the substrate bias was a possible way to control the plasma properties in VHF magnetron sputtering.  相似文献   

14.
To achieve a better insight into the far-field plasma spatial distribution and evolution characteristics of the 300 W class low-power Hall thruster (LHT) for commercial aerospace applications,a dedicated and integrated plasma diagnostic system composed of seventeen Faraday cups (FC) and two triple Langmuir probes (TLP) is established to investigate the time-averaged in situ spatial distribution characteristics of far-field ions and electrons.The ion current density (ICD),plasma potential,plasma density,and electron temperature at 1000 mm downstream of 300 W class LHT for commercial aerospace applications in the azimuthal angle range of-90° to 90° were investigated under the conditions of different anode mass flow rates and discharge voltages.The results demonstrated that ICD,beam divergence angle,and mass utilization efficiency increased with increasing anode mass rate.The double-wings phenomenon was observed in the spatial distribution of ICD at large angles from the thruster axis,which is attributed to charge exchange collisions at increasing vacuum backpressure.The plasma electron temperature,electron density,and plasma potential parameters derived from the TLP decreased rapidly in the angle range from 0° to 30° and did not exhibit significant variations above 30°,which was also in good agreement with the results of the measured divergence angle of the FC.The discrepancy of average ion speed was calculated.The maximum error is better than 31.5%which checks the consistency between the TLP's results and that of FC to some extent.  相似文献   

15.
In this study, the neutral gas distribution and steady-state discharge under different discharge channel lengths were studied via numerical simulations. The results show that the channel with a length of 22 mm has the advantage of comprehensive discharge performance. At this time, the magnetic field intensity at the anode surface is 10% of the peak magnetic field intensity. Further analysis shows that the high-gas-density zone moves outward due to the shortening of the channel length, which optimizes the matching between the gas flow field and the magnetic field, and thus increases the ionization rate. The outward movement of the main ionization zone also reduces the ion loss on the wall surface. Thus, the propellant utilization efficiency can reach a maximum of 96.8%. Moreover, the plasma potential in the main ionization zone will decrease with the shortening of the channel. The excessively short-channel will greatly reduce the voltage utilization efficiency. The thrust is reduced to a minimum of 46.1 mN. Meanwhile, because the anode surface is excessively close to the main ionization zone, the discharge reliability is also difficult to guarantee. It was proved that the performance of Hall thrusters can be optimized by shortening the discharge channel appropriately, and the specific design scheme of short-channel of HEP-1350PM was defined, which serves as a reference for the optimization design of Hall thruster with large height–radius ratio. The short-channel design also helps to reduce the thruster axial dimension, further consolidating the advantages of lightweight and large thrust-to-weight ratio of the Hall thruster with large height–radius ratio.  相似文献   

16.
In this paper,a direct connection between the discharge current amplitude and the thruster performance is established by varying solely the capacitance of the filter unit of the Hall thrusters.To be precise,the variation characteristics of ion current,propellant utilization efficiency,and divergence angle of plume at different low-frequency oscillation amplitudes are measured.The findings demonstrate that in the case of the propellant in the discharge channel just meets or falls below the full ionization condition,the increase of low-frequency oscillation amplitude can significantly enhance the ionization degree of the neutral gas in the channel and increase the thrust and anode efficiency of thruster.On the contrary,the increase in the amplitude of low-frequency oscillation will lead to increase the loss of plume divergence,therefore the thrust and anode efficiency of thruster decrease.  相似文献   

17.
A 200 W cylindrical Hall thruster with a cusp-type magnetic field was proposed, manifesting convergent plume and high specific impulse. In this paper, a series of ring-shaped anodes are designed and the influence of anode axial position on the performance of CHT with a cusp-type magnetic field is studied. The experimental results indicate that the thruster keeps stable operation at the condition of 140–270 W discharge power. When the anode moves axially towards the upstream cusp field, the thrust enhances from 6.5 mN to 7.6 mN and specific impulse enhances from 1658 s to 1939 s significantly. These improvements of thruster performance should be attributed to the enhancement of current utilization, propellant utilization and acceleration efficiency. According to the analyses on the discharge characteristics, it is revealed that as the anode moves upstream, the electron transport path could be extended, the magnetic field in this extended path could impede electron cross-field transport and facilitate the ionization intensity, yielding to the enhancement of current utilization and propellant utilization efficiency. Moreover, along with this enhancement of upstream ionization at the given anode flow rate, the main ionization region is thought to move upstream and then separate more apparently from the acceleration region, which has been demonstrated by the narrowing of ion energy distribution function shape. This change in acceleration region could decrease the ion energy loss and enhance acceleration efficiency. This work is beneficial for optimizing the electrode structure of thruster and recognize the ionization and acceleration process under the cusp magnetic field.  相似文献   

18.
In order to achieve a better understanding of plume characteristics of LIPS-300 ion thruster, the beam current density, ion energy and electron number density of LIPS-300 ion thruster plume are studied with an Advanced Plasma Diagnostics System(APDS) which allows for simultaneous in situ measurements of various properties characterizing ion thruster, such as plasma density, plasma potential, plasma temperature and ion beam current densities, ion energy distribution and so on. The results show that the beam current density distribution has a double‘wing' shape. The high energy ions were found in small scan angle, while low energy ions were found in greater scan angle. Electron number density has a similar shape with the beam current density distribution.  相似文献   

19.
The performance of an iodine radio ion thruster with a 4 cm diameter(IRIT4) was studied experimentally in this paper. Regulation of the mass flow rates of the iodine propellant is achieved by using a temperature control method of the iodine reservoir. Performance of the thruster using iodine as propellants is obtained at different total thruster powers of 40.6–128.8 W,different grid voltages of 1000–1800 V and the iodine flow rate of 100 μgs~(-1). Results show that thrust and specific impulse increase approximately linearly with the increasing total thruster power and the screen grid voltage. The thrust of 2.32 mN and the specific impulse of 2361 s are obtained at the nominal total thruster power of 95.8 W and the screen grid voltage of 1800 V. It is also indicated that performance of the iodine propellant is comparable to that of the xenon propellant; and a difference between them is that the iodine thrust is slightly higher than xenon when the total thruster power is more than 62 W. At the nominal 95.8 W total thruster power, the thrust values of them are 2.32 m N and 2.15 mN respectively, and the thrust-to-power ratios of them are 24.2 mN kW~(-1) and 23.5 mN kW~(-1), respectively.  相似文献   

20.
In this study, a high specific impulse Hall thruster, HEP-140MF, having a high discharge voltage, was used to accelerate ions. We aimed to obtain a high specific impulse and an acceleration zone moving downstream toward the channel exit to reduce wall sputtering erosion of the walls of the discharge channel, hence ensuring an enhanced lifetime. To study the lifetime characteristics of the high specific impulse Hall thruster, a life test was performed on the HEP- 140MF thruster for the first time, and performance parameters, such as thrust, specific impulse, and efficiency, were measured. Changes in the performance parameters and evolutions in the surface profiles of the discharge channel wall were summarized. The reasons contributing to these changes during the life test were analyzed. Moreover, the accelerated life test method was validated on the HEP-140MF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号