首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
A two-dimensional multi-fluid model is developed to investigate the effects of dilution gas on microplasma properties and nanoparticle behavior in atmospheric-pressure radio-frequency acetylene discharges. The percentage of dilution gases (argon and helium) percentage varied from 0% to 90%, with the pressure kept constant. Simulation results show that the dilution gas percentage has a significant influence on the spatial distributions of the electron density and temperature, as well as on the formation of nanoparticles in acetylene microplasmas. With increasing dilution gas percentage, the electron density profile changes continuously from being high at the edge to high in the center. A mode transition from a mixed discharge mode with both α regime and drift-ambipolar regime into α regime occurs, which is associated with a sudden decrease in the electron density of the presheaths and an increase in the electron temperature of the bulk plasma. The mode transition point corresponds to the lowest number density ratio of hydrocarbon ions to acetylene. The highest number density ratio is observed at a dilution percentage of 90%, and causes more effective nucleation and coagulation of nanoparticles. Furthermore, owing to the high ionization potential of helium, the transition point moves to a larger dilution gas percentage in ${{rm{C}}}_{2}{{rm{H}}}_{2}$/He microplasmas. Finally, the growth of nanoparticles via coagulation is studied.  相似文献   

2.
In this work, experimental and theoretical studies were carried out on arc-induced bubble dynamic behaviors in insulation oil. Direct experimental evidence indicated that the arc-induced bubble experiences pulsating growth rather than a continuous expansion. Furthermore, a theoretical model and numerical calculation method were proposed, which revealed the dynamic mechanism of bubble growth. Good agreement between the theoretical results and experimental observations verified the general correctness and feasibility of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号