首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对四川盆地川中地区须家河组天然气的组分和碳氢同位素分析,结合前人对川西和川南地区须家河组及四川盆地其他层系天然气研究成果和区域地质背景,开展天然气成因和来源、氢同位素特征与指示意义等研究。结果表明,川中地区须家河组天然气以烃类气体为主,甲烷含量为67.89%~98.05%,重烃气(C_(2~+))含量为0.42%~16.62%,非烃气体(CO_2、N_2)含量较低,除岳121井N_2和CO_2含量较高外,N_2含量平均值为0.82%,CO_2含量平均值为0.26%。元坝须家河组天然气干燥系数平均高达0.991,为干气;川中其他地区须家河组天然气干燥系数皆小于0.95,为湿气。天然气δ~(13)C_1值介于-43.8‰~-29.2‰之间,δ~(13 )C_2值介于-33.5‰~-20.7‰之间,δ~(13 )C_3值介于-33.6‰~-19.3‰之间,δ~(13 )C_4值介于为-27.2‰~-22.2‰之间;天然气δD_1值介于-191‰~-148‰之间,δD_2值介于-165‰~-115‰之间,δD_3值介于-153‰~-107‰之间。甲烷及其同系物(C_(2-4))基本上为碳氢同位素正序排列(δ~(13 )C_1δ~(13 )C_2δ~(13 )C_3δ~(13 )C_4、δD_1δD_2δD_3),与典型的有机成因烷烃气碳氢同位素特征一致。元坝须家河组天然气成熟度R_O值为1.09%~1.78%,川中其他地区须家河组天然气成熟度R_O值为0.64%~0.92%。川中须家河组天然气主要为来自须家河组煤系源岩的煤成气,元坝须二段天然气为来自须家河组煤系源岩的高成熟煤成气混入下寒武统(及下志留统)原油裂解气的混合气。四川盆地须家河组天然气甲烷δD值偏高,都大于-200‰。与来自淡水湖沼相烃源岩的吐哈盆地台北凹陷的煤成气相比,尽管两者成熟度相近,但甲烷δD值差异高达90‰,说明须家河组煤系源岩形成于水体咸化的沉积环境。  相似文献   

2.
基于天然气的组分、稳定碳同位素和轻烃组成特征及实际地质背景,对东海盆地西湖凹陷平北地区天然气的地球化学特征、成因类型及来源进行了分析和探讨。平北地区天然气体以甲烷为主,重烃含量相对较高,主要表现为湿气特征,非烃类气体主要是N_2和CO_2;天然气δ~(13)C_1和δ~(13)C_2值分别介于-33.7‰~-42.5‰和-22.7‰~-30.9‰,不同油气田之间δ~(13)C_1具有差异性;在C_7轻烃化合物中,甲基环己烷占据明显优势,其质量分数介于47.8%~66.3%,表明天然气具有煤型气特征。成因分析和气源对比表明,该区天然气主体为煤型气,主要处于成熟—高成熟阶段,推测部分浅层天然气主要来源于研究区东侧西次凹成熟度更高的平湖组烃源岩,而大部分天然气仍主要来自于本区成熟度较低的平湖组烃源岩。本文成果可以为西湖凹陷下一步油气勘探提供理论依据。  相似文献   

3.
依据天然气组分、碳同位素和稀有气体等资料对川东北元坝—通南巴地区二叠系—三叠系天然气地球化学特征及成因进行了系统研究。结果表明,(H_2S+CO_2)与(H_2S+CO_2+∑C_n)比值可以作为表征热化学硫酸盐还原作用(TSR)程度的参数。元坝地区长兴组至须家河组二段、通南巴地区飞仙关组至须家河组四段天然气δ~(13)C_2变化幅度大于δ~(13)C_1,且δ~(13)C_2值介于-24.4%。~-36.7‰,表明存在油型气和煤型气混合,理论上各层系天然气碳同位素均应呈倒序分布,但元坝地区长兴组、飞仙关组和通南巴地区嘉陵江组天然气受TSR影响,仍表现为δ~(13)C_1δ~(13)C_2或δ~(13)C_1δ~(13)C_2δ~(13)C_3的正序分布。元坝地区须家河组三段、四段天然气δ~(13)C_2值大多重于-28%。,以煤型气为主,表现为δ~(13)C_1δ~(13)C_2δ~(13)C_3的正序分布。天然气稀有气体氦同位素R/R_a值分布于0.00881~0.02510,表现出典型的壳源特征,源于TSR的酸性气体和源于烃源岩热演化的有机酸对碳酸盐岩的溶蚀是该地区二氧化碳形成以及δ~(13)C_(CO_2)变重的主要原因。气-气及气-源综合对比表明,元坝—通南巴地区天然气成因类型可以划分为龙潭型(A1型)、混合型(A2型)和须家河型(B型),龙潭型和混合型主要来源于上二叠统龙潭组烃源岩,其中混合型混有少量须家河组来源气,须家河型主要来源于其自身层系的烃源岩。  相似文献   

4.
为明确松辽盆地莺山地区深层天然气的成因与成藏模式,综合天然气组分及其碳同位素特征和烃源岩岩石热解、总有机碳含量和干酪根碳同位素特征等测试资料,系统分析了深层营城组和沙河子组天然气地球化学特征及其成藏模式。营城组天然气以油型气为主,烃源岩为营城组四段暗色泥岩,烃类组分的碳同位素偏轻,在泉头组沉积末期和青山口组沉积末期两期成藏;沙河子组天然气均为煤型气,烃类组分的碳同位素偏重,整体呈正序分布,主力成藏期为泉头组沉积末期。泉头组沉积末期,沙河子组煤型气的混入导致部分营城组天然气样品发生δ13C113C2的倒转。营城组发育“源储紧邻、断体匹配、构造高点聚气”的天然气成藏模式,高生烃强度泥岩控制着气藏展布范围,“凹中隆”是天然气运移低势区和充注有利指向区,“断裂+圈闭”有机匹配是气藏形成的关键。沙河子组发育“源储一体、超压驱动、侧向近源运聚”的致密气成藏模式,烃源岩排烃强度和超压范围控制着气藏的宏观展布,而“运聚一体”的优质储层决定了气藏规模。研究认识对于松辽盆地外围断陷区开展深层天然气勘探具有重要...  相似文献   

5.
随着天然气勘探不断向深层发现,高—过成熟天然气越来越多,早期基于成熟—高成熟天然气所建立的用甲、乙烷碳同位素判识天然气成因类型的指标或图版不断显示出一系列的问题。为完善甲、乙烷碳同位素判识指标或图版,采集了中国7个含气盆地近200多口井的天然气样品,分别开展了天然气组分和烷烃碳同位素分析,并对部分气井的天然气样品开展了天然气汞含量分析,研究表明对于大多数天然气来说用乙烷碳同位素δ~(13)C_2=-28‰或-29‰作为划分煤型气和油型气的界限是合理的,但对于部分演化程度较高的天然气来说还需要结合甲烷碳同位素进行综合判断。在用甲、乙烷碳同位素判断天然气类型的图版中,煤型气和油型气的划分界限为δ~(13) C_2=-(10.2δ~(13)C_1+1 246)/29.8,当δ~(13)C_2-(10.2δ~(13)C_1+1 246)/29.8时,天然气类型为煤型气;当δ~(13)C_2-(10.2δ~(13)C_1+1 246)/29.8且δ~(13)C_1-55‰时,天然气类型为油型气;当δ~(13)C_1-55‰时为生物气。  相似文献   

6.
基于中国祁连山冻土带、南海北部珠江口盆地、台西南盆地的陆坡等天然气水合物样品资料,进行了天然气水合物气的成因类型分析。研究结果表明,祁连山木里地区中侏罗统江仓组发现的天然气水合物气主要是油型气,为自生自储型,δ~(13)C_1值为-52.7‰~-35.8‰,δ~(13)C_2值为-42.3‰~-29.4‰;还发现了少量煤成气,气源岩可能主要为中侏罗统木里组含煤地层,δ~(13)C_1值为-35.7‰~-31.3‰,δ~(13)C_2值为-27.5‰~-25.7‰。南海珠江口盆地与台西南盆地天然气水合物气主要是CO_2还原型生物气,δ~(13)C_1值为-74.3‰~-56.7‰,δD1值为-226‰~-180‰;还发现热成因气遗迹,δ~(13)C_1值为-54.1‰~-46.2‰。综合国内外20个地区(盆地)相关天然气水合物气地球化学资料,提出世界天然气水合物热成因气既有油型气也有煤成气,以油型气为主,在中国祁连山和加拿大温哥华岛附近识别出了少量煤成气,煤成气δ~(13)C_1值重即大于等于-45‰,δ~(13)C_2值大于-28‰;油型气δ~(13)C_1值为-53‰~-35‰,δ~(13)C_2值小于-28.5‰。世界天然气水合物气主要是生物成因气,并以CO_2还原型生物气为主,仅在俄罗斯贝加尔湖盆地发现乙酸发酵型生物气。CO_2还原型生物气δD1值重即大于等于-226‰,乙酸发酵型生物气δD1值轻即小于-294‰。世界天然气水合物的生物气δ~(13)C_1值最重的为-56.7‰,最轻的为-95.5‰,其中-75‰~-60‰是高频段。世界天然气水合物气δ~(13)C_1值最重为-31.3‰,最轻的为-95.5‰;δD_1值最重的为-115‰,最轻的为-305‰。  相似文献   

7.
对四川盆地38口井超深层(埋深大于6 000 m)天然气组分及其地球化学特征进行分析,以判明超深层天然气成因。四川盆地超深层天然气组分具如下特征:甲烷占绝对优势,含量最高达99.56%,平均86.67%;乙烷含量低,平均为0.13%;几乎没有丙、丁烷,为干气,属过成熟度气。硫化氢含量最高为25.21%,平均为5.45%;烷烃气碳同位素组成为:δ~(13)C_1值从-33.6‰变化至-26.7‰,δ~(13)C_2值从-32.9‰变化至-22.1‰,绝大部分没有倒转而主要为正碳同位素组成系列。烷烃气氢同位素组成为:δD_1值从-156‰变化至-113‰,少量井δD_2值从-103‰变化至-89‰。二氧化碳碳同位素组成为:δ~(13)C_(CO_2)值从-17.2‰变化至1.9‰,绝大部分在0±3‰范围。根据δ~(13)C_1-δ~(13)C_2-δ~(13)C_3鉴别图版,盆地超深层烷烃气除个别井外绝大部分为煤成气。根据二氧化碳成因鉴别图和δ~(13)C_(CO_2)值,判定除个别井外,超深层二氧化碳绝大部分为碳酸盐岩变质成因。龙岗气田和元坝气田超深层硫化氢为非生物还原型(热化学硫酸盐还原成因),双探号井的超深层硫化氢可能为裂解型(硫酸盐热裂解成因)。  相似文献   

8.
四川盆地中二叠统是继震旦—下古生界之后的又一勘探热点领域,但对其天然气地球化学特征及成因类型尚不清楚。为此,通过剖析最新气样天然气组分、烷烃同位素等地球化学参数,结合前人研究成果,总结四川盆地中二叠统天然气地球化学特征,论证天然气成因类型。研究结果表明:1)四川盆地中二叠统天然气为典型干气。以烃类气体为主,CH_4体积分数高,C_2H_6,C_3H_8体积分数低,干燥系数大;非烃气体体积分数低,含微量N_2、中低量CO_2,中低质量浓度的H2S。2)四川盆地中二叠统天然气甲、乙碳同位素大多发生倒转。δ~(13)C_2分布范围较广,为-36.7‰~-25.2‰,δ~(13)C_1相对较重,介于-35.6‰~-27.7‰;δ2H1主要分布于-141‰~-125‰。3)多数天然气δ~(13)C_2轻于-29.0‰,甲基环己烷/正庚烷和(2-甲基己烷+3-甲基己烷)/正己烷2项比值分别为大于1.0和0.5,ln(C_1/C_2)值介于6.19~7.87,ln(C_2/C_3)值介于3.00~4.76,碳同位素、轻烃、组分特征综合判识中二叠统天然气类型为原油裂解气。  相似文献   

9.
探讨鄂尔多斯盆地奥陶系盐下天然气的成因类型及来源,为勘探部署提供理论依据。以天然气地球化学特征分析为基础,结合成藏组合特点剖析,通过烷烃气及轻烃组分碳同位素组成比对、δ~(13)C_1—RO相关性分析等综合判识天然气成因类型与来源。结果显示,鄂尔多斯盆地奥陶系盐下天然气组分以烃类气体为主,烃类组分含量平均为94.1%。烃类气体中甲烷占优势,甲烷化系数[C_1/∑(C_1—C_n)]随区域热演化程度的不同而变化明显,从靖边—乌审旗—神木地区,甲烷化系数依次由0.99→0.95→0.85逐渐减小。除高含硫天然气外,奥陶系盐下天然气的δ~(13)C_1值、δ~(13)C_2值整体偏低,δ~(13)C_1值分布于-45.90‰~-37.29‰之间,平均为-39.58‰,δ~(13)C_2值分布于-35.58‰~-25.77‰之间,平均为-29.9‰。奥陶系膏盐岩下高含硫天然气的甲烷、乙烷碳同位素值显著偏高,是硫酸盐热化学还原反应(TSR)的结果。综合各项地球化学指标气气、气源比对,结果显示鄂尔多斯盆地奥陶系盐下天然气属于自生自储油型气,奥陶系海相气源岩是其主力供烃源岩。  相似文献   

10.
吐哈盆地为中国重要的富油气盆地,目前该盆地的天然气勘探主要集中在台北凹陷,有关台北凹陷的天然气成因和来源一直存在诸多争议。通过分析台北凹陷巴喀、丘陵、鄯善和温米等4个油气田23个天然气样品的组分和碳氢同位素组成,结合前期红台和丘东气田天然气地球化学资料以及前人研究成果和区域地质背景,开展天然气成因和来源研究。结果表明:台北凹陷巴喀、丘陵、鄯善和温米等地区天然气以烃类气体为主。甲烷含量为65.84%~97.94%,重烃(C_(2—5))含量高达34.98%,非烃气体(CO_2、N_2)含量非常低,为湿气。天然气δ~(13)C_1值为–44.9‰~–40.4‰,δ~(13)C2值为–28.2‰~–24.9‰,δ~(13)C_3值为–27.1‰~–18.0‰,δ~(13)C_4值为–26.7‰~–22.1‰;天然气δD1值变化不大,为–272‰~–252‰,δD_2为–236‰~–200‰,δD_3为–222‰~–174‰。甲烷及其同系物(C_(2—5))基本上为碳氢同位素组成正序排列(δ~(13)C1δ~(13)C_2δ~(13)C_3δ~(13)C_4δ~(13)C_5、δD_1δD_2δD_3),与典型的有机成因烷烃气碳氢同位素组成特征一致。研究区天然气为成熟度较低的煤成气(Ro均值为0.7%),主要来自中下侏罗统煤系源岩。天然气氢同位素组成受到烃源岩热演化程度和形成环境水介质的影响,数据表明研究区天然气烃源岩为陆相淡水湖沼沉积。巴喀油田巴23井和柯19井天然气后期发生次生改造,为生物改造气。图9表2参58  相似文献   

11.
中拐地区是准噶尔盆地天然气勘探的重点领域之一,目前在中拐-新光断块佳木河组取得了致密砂岩气勘探的局部突破。通过对致密气样的天然气组分和碳同位素等资料的详细分析,新光地区致密砂岩气组分以甲烷为主,含量达91.79%,干燥系数均值为0.96,为干酪根裂解气类型,属于较高热演化程度的干气;该区气样δ~(13)C_1值均小于-30‰,δ~(13)C_2分布范围为-32.56‰~-26.79‰;总体具有正碳同位素序列特征,在有机热成因基础之上佳木河组致密砂岩气主要为自源型的煤成气和它源型的油型气混合而成;整体表现为成熟-高成熟的煤成气和偏煤型混合气。根据成熟度推算及源岩发育特征,认为煤成烷烃气来自佳木河组,油型烷烃气来自风城组,其中以佳木河组腐殖型源岩的贡献为主。结合致密砂岩气成藏条件综合分析,研究区可能难以形成天然气富集的大气区,但仍有发育局部富气的"甜点区"潜力。  相似文献   

12.
为探究川南地区须家河组天然气地球化学特征及成藏机理,以天然气地球化学分析数据为基础,对该区天然气地球化学特征、成因、成藏期次及成藏过程进行了分析。结果表明:研究区天然气以烷烃气为主,甲烷体积分数大于80%,重烃体积分数低,天然气干燥系数大于0.85;部分天然气含H2S,这是研究区与四川盆地其他地区须家河组天然气组分特征的最大差异;天然气δ~(13)C_1为-43.17‰~-30.80‰,δ~(13)C_2为-33.81‰~-24.90‰,δ~(13)C_3为-28.65‰~-22.70‰,总体具有正碳同位素系列特征。碳同位素与轻烃分析均证实,研究区须家河组天然气以煤型气为主,同时存在部分油型气;煤型气主要来自须家河组煤系烃源岩,油型气主要来自下伏海相层系。成藏年代分析表明,研究区须家河组天然气主要有3期成藏:晚侏罗世中期—早白垩世,须家河组煤系烃源岩生成的少量煤型气进入须家河组成藏;晚白垩世,须家河组煤系烃源岩大量生成煤型气并进入须家河组成藏,该时期是须家河组天然气的主要成藏期;喜山期,部分下伏油型气经断裂进入须家河组成藏,该阶段的流体充注是研究区出现异常高温包裹体与天然气含H_2S的主要原因。  相似文献   

13.
基于天然气组成、轻烃和同位素数据以及相关地质资料,对莺歌海凹陷东斜坡L岩性圈闭气田天然气的成因类型、来源以及运移进行研究。结果显示,L气田天然气组成变化较大,烃类含量为33.6%~91.5%,CO_2含量为0.5%~62.2%,干燥系数达0.94~0.99;烷烃气的δ~(13)C1值为-40.71‰~-27.40‰、δ~(13)C2值为-27.27‰~-20.26‰,C5—C7轻烃内组成的异构烷烃含量为55%~73%,属于煤型气,主要来自中新统陆源富有机质烃源岩;当CO_2在天然气中的含量大于10%时,其δ~(13)CCO_2值为-9.04‰~-0.95‰,与之伴生的氦气~3He/~4He值为7.78×10~(-8),属壳源无机成因,深部地层钙质泥岩及碳酸盐岩等热分解生成的CO_2是其主要来源。天然气存在3种运移方式:储集层邻近的中新统烃源岩接触式供烃、中新统梅山组—三亚组烃源岩生成高成熟气通过隐伏断裂垂向充注、沿砂体侧向运移;较大的"源-储"压差是重要的运移驱动力,短距离运移及有效的"源-储"配置控制天然气分布。图12表1参30  相似文献   

14.
元坝气田是迄今为止我国埋藏最深的大型海相气田,有关其海相层系礁滩相储层特征与成藏主控因素的研究取得了重要进展,但对其及邻区长兴组—飞仙关组天然气成因的认识仍存在分歧。地球化学特征研究表明,元坝气田长兴组—飞仙关组天然气以烃类气体为主,其中甲烷占主导,干燥系数均高于0.995,非烃气体CO_2和H_2S平均含量分别高达8.55%和6.47%;δ~(13)C_1值和δ~(13)C_2值分别介于-31.2‰~-27.9‰和-29.9‰~-25.0‰之间,且普遍具有正序特征;δ~(13)C_(CO_2)值普遍高于-8‰,δD_1值介于-156‰~-107‰之间。元坝气田长兴组—飞仙关组天然气普遍经历了硫酸盐热化学还原作用的改造,其主体为原油裂解气,主要为龙潭组烃源岩生成的原油后期发生裂解所形成。气藏中的CO_2主体为无机成因,来自酸性流体与碳酸盐岩储层的相互作用。  相似文献   

15.
通过对松辽盆地长岭断陷烷烃气和CO2碳同位素资料的分析,认为该地区存在无机成因天然气。烃类气体中具有重碳同位素异常(δ13 C1>-30‰)和负碳同位素系序(δ13 C1>δ13 C2>δ13 C3>δ13 C4)的同位素分布特征,CO2碳同位素分布在-4.63‰~-16.7‰,部分天然气表现出无机成因烃类气体的特点。3 He/4 He值为0.88Ra,指示有幔源氦的存在,说明该区天然气可能是壳幔混源。长岭断陷天然气藏中不仅无机成因烷烃气由北向南逐渐减少,且幔源CO2也表现出从西北向东南含量明显减少,与区域构造、断裂走向和火山岩密切相关等与无机成因烷烃气相似的分布特征。  相似文献   

16.
为探明川中地区须家河组天然气特征、成因及来源,对该区须家河组天然气组分及碳、氢同位素特征进行了分析。结果表明:川中地区须家河组天然气以甲烷为主,除元坝、通南巴等地区外,主体表现为湿气特征,干燥系数小于0.95,天然气干燥系数主要受烃源岩成熟度的控制。δ~(13)C_1值介于-43.8‰~-29.3‰之间,δ~(13)C_2值介于-35.4‰~-24.3‰之间,δD_(CH_4)值介于-179‰~-152‰之间。天然气成因鉴别及气源对比结果表明:川中地区大部分气田须家河组天然气为煤成气,来源于须家河组煤系烃源岩。川中地区大部分区域仅少数天然气样品发生丙烷、丁烷的碳同位素部分倒转,主要由同源不同期气的混合所致。  相似文献   

17.
通过分析川东北地区陆相储层天然气组分、碳同位素特征,并结合海相天然气数据进行天然气类型划分。对比海相和陆相天然气甲烷氢同位素组成δDCH4、稀有气体同位素40 Ar/36 Ar,分析陆相天然气的来源。不同区域陆相储层天然气的地球化学特征、成因类型及来源差别较大。通南巴地区的陆相储层天然气δ13C2值较低(-29‰),δDCH4值分布范围较大(-186‰~-127‰)且跨越海、陆相分界线(-160‰),为海相来源油型气和陆相来源煤型气、油型气的不均匀混合,海相来源天然气贡献显著;元坝地区陆相储层天然气δ13C2值分布范围较大且跨越煤、油型气分界线(-29‰~-26‰),以煤型气为主,伴有少油型气,δDCH4值较低,为陆相地层自生自储型油型气;阆中地区陆相储层天然气δ13C2和δDCH4特征显示其为陆相来源的油型气。  相似文献   

18.
通过分析辽河坳陷东部凹陷29个天然气样品的地质和地球化学特征,探讨了研究区天然气成因类型的新认识。研究区主要烃源岩为古近系沙河街组和东营组,母质类型以偏腐殖型为主,热演化程度主体处于0.5%~1.0%之间。天然气组分以烃类气体占绝对优势,干气、湿气并存;δ13 C1值为-46‰~-38‰、δ13C2值为-30‰~-25‰、δ2 HCH4值为-250‰~-210‰;C5-7轻烃化合物中富含异构烷烃,庚烷值和异庚烷值均落在低演化区。对比分析吐哈低熟气特征,指出研究区探明天然气的主体属于低熟气范畴,满足其2个本质属性:母质为偏腐殖型、成熟度处于低演化阶段。气源对比表明,天然气主要来源于古近系沙三段(Es3)陆相湖盆偏腐殖型源岩,它的成熟度(RO)与基于"δ13C1—RO"计算得出的天然气RO值(0.50%~0.90%)在空间分布特征上相吻合。此外,微生物活动对气藏后期的改造作用也不容忽视:大部分C2+烃类被微生物消耗而使天然气组分变干;C2、C3含量降低至一定程度时,δ13C2值、δ13C3值呈现异常高,甚至达到正值,而δ13C1值受微生物活动影响较小;正庚烷容易被降解而使研究区天然气庚烷值相比吐哈低熟气更低。  相似文献   

19.
为了研究不同煤系烃源岩(煤、暗色泥岩和炭质泥岩)生气差异,对三者进行了高压釜热模拟实验,并对热模拟气进行了组分分析、碳氢同位素分析和轻烃地球化学分析。实验结果表明:煤的产气率高于暗色泥岩和炭质泥岩,并在热模拟初期阶段产生大量CO_2气体,煤在低温阶段的CO_2产气量可达20%;暗色泥岩热模拟气甲烷含量在整个热模拟阶段都处于领先地位,炭质泥岩的C_2—C_4烷烃气的含量高于煤和暗色泥岩,煤生成的非烃气体含量最多;在整个热模拟阶段,煤热解气的碳、氢同位素略重于暗色泥岩和炭质泥岩热模拟气(δ~(13)C_(2煤)δ~(13)C_(2暗泥)δ~(13)C_(2炭泥)),热模拟温度高于500℃后,热模拟气出现碳同位素序列倒转现象;在轻烃产物中,煤热模拟气具有较高含量苯、甲苯以及2,3-二甲基戊烷,而炭质泥岩热模拟气具有较高含量的2,4-二甲基戊烷。将热模拟实验结果应用到苏里格气田,可以得到如下启示:(1)苏里格气区煤系烃源岩生烃早期形成的CO_2可能与储层致密化有一定关系;(2)轻烃特征可作为不同煤系烃源岩生气鉴别指标,苏里格气田天然气的主要贡献者是煤。  相似文献   

20.
定北地区是中国石化在鄂尔多斯盆地的重要探区之一,近年来该区上古生界天然气勘探取得了重要突破,但对该区天然气成因和来源的研究程度偏低,前人对盆地内上古生界天然气是否发生了大规模侧向运移也存在争议。天然气地球化学特征研究表明,定北地区上古生界天然气为典型干气,干燥系数(C_1/C_(1-5))介于0.977~0.986之间,δ~(13)C_1值、δ~(13)C_2值和δD_1值分别为-30.6‰~-28.6‰、-25.9‰~-24.1‰和-191‰~-177‰,CH_4、C_2H_6碳、氢同位素组成均为正序特征。烷烃气碳、氢同位素组成等综合表明,定北地区上古生界天然气为典型煤成气。根据煤成气二阶段分馏模式计算所得R_O值与定北地区上古生界烃源岩样品实测R_O值一致,表明定北地区上古生界天然气主要来自原地的太原组—山西组烃源岩。位于鄂尔多斯盆地东北部的大牛地气田与定北地区相比,其天然气具有较低的δ~(13) C_1值、C_1/C值_(1-5)和C_1/C_(2+3)值及更高的C_2/C_1值,表现出来自相对较低成熟度的烃源岩的特征而不是运移效应,这表明鄂尔多斯盆地上古生界天然气未发生大规模的侧向运移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号