首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 209 毫秒
1.
双电层电容器高比表面积活性炭的研究   总被引:15,自引:3,他引:15  
以石油焦为原料,KOH和NaOH为活化剂制取双电层电容器用高比表面积活性炭电极材料。考察了活化剂的种类及其与石油焦配比对活性炭比电容的影响,并对KOH和NaOH的混和物在活化过程中金属K和Na的协同作用进行了初步探讨。研究结果表明控制适宜的活化工艺条件可制得比电容高达52.60 F/g的高比表面积活性炭,用它组装成的双电层电容器具有良好的充放电性能。  相似文献   

2.
以石油焦为原料,KOH为活化剂,采用微波辐照加热法,制备了石油焦基双电层电容器用活性炭。研究了石油焦与KOH活化剂的比例、微波功率以及微波辐照时间对活性炭孔径分布和比电容量的影响。结果表明:在KOH活化剂与石油焦的质量比为3.5∶1,微波功率800W和辐照时间7min时,制备的活性炭比表面积为2031.96m2/g,比电容量达286.79F/g,以该活性炭作电极的双电层电容器有良好的循环稳定性和充放电性能。  相似文献   

3.
微波加热法制备电极材料活性炭   总被引:2,自引:0,他引:2  
以煤为原料,KOH为活化剂,采用微波辐射加热法和电阻炉加热法制备出双电层电容器用活性炭。对比研究了两种工艺下KOH用量、活化时间对活性炭比电容量的影响,考察了活性炭双电层电容器的充放电特性。结果显示:微波活化时,ζ(KOH∶煤)为3∶1,起电弧时间5min,比电容为283.67F/g;电阻炉活化时,ζ(KOH∶煤)为4∶1,保温时间为1h,比电容为235.55F/g。经过100次循环充放电后,微波法和电阻炉法所得的活性炭的比电容分别保持在98.10%和91.04%。  相似文献   

4.
酚醛树脂制备超级电容器电极材料   总被引:1,自引:1,他引:0  
以酚醛树脂为原料,NaOH为活化剂制备超级电容器用电极材料高比表面积活性炭(HSAAC),考察了制备条件对HSAAC碘值w(I)和比电容的影响。结果表明,在酚醛树脂炭化后加入NaOH,炭化温度为600℃、时间1h,活化温度为900℃、时间1h,制备的HSAAC的w(I)和比电容具有最大值,分别为1623mg/g、146.53F/g;而在固化前加入NaOH,制备的HSAAC的w(I)和比电容得到大幅度提高,分别为1895mg/g、240.99F/g,比电容接近其理论容量280F/g,但收率低,仅为10%。  相似文献   

5.
以Mn(NO3)2、活性中间相碳微球(活性MCMB)为原料,采用KBrO3氧化法,成功制备了MnO2/活性MCMB新型复合电极材料;以该材料制成电极,并以质量分数为30%的KOH溶液为电解液,组装成扣式电容器。通过XRD和SEM分析了MCMB,活性MCMB及MnO2/活性MCMB的晶相结构和表面形态;采用循环伏安、交流阻抗和恒流充放电法研究了电容器的电容性能。结果表明:以MnO2/活性MCMB复合电极制成的电容器电容性能优良。在0.5A/g电流密度下,其充放电曲线表现出典型的电容行为,初始比容量高达403.5F/g,相应能量密度为12.5Wh/kg;其循环伏安曲线关于零电流线对称,呈现为较规则的矩形;其等效串联电阻约为0.7Ω。  相似文献   

6.
NaOH活化制备超级电容器用活性炭球电极材料   总被引:1,自引:0,他引:1  
以NaOH为活化剂、采用蔗糖水热法,制备超级电容器用高比表面积球形活性炭电极材料。采用标准N2吸附法、SEM和XRD对活性炭的结构进行表征,用恒流充放电测试其在1mol/L Et4NBF4/PC电解液中的电化学性能,并将其与日本商业电容炭YP17进行了比较。结果表明:ζ(NaOH∶活性炭)为5∶1、600℃活化1h制备的球形活性炭比表面积为3261m2/g,其比电容可达156F/g,远大于YP17(108F/g),大电流倍率性能突出。  相似文献   

7.
双电层电容器用酚醛树脂基活性炭的制备   总被引:2,自引:0,他引:2  
以酚醛树脂为原料,KOH为活化剂制备双电层电容器用高比表面积活性炭电极材料。考察了工艺因素对活性炭比电容的影响,探讨了酚醛树脂基高比表面积活性炭作双电层电容器电极的电化学特性。结果表明,在固化温度为150℃、炭化温度为700℃,ζ(碱/炭)为4,活化温度为800℃时,制得的高比表面积活性炭双电极比电容可达74.2 F/g。  相似文献   

8.
以氧化石墨烯为原料,通过水热处理得到石墨烯水凝胶,浸渍KOH溶液后进一步高温活化制备了高比表面积的三维多孔石墨烯,系统地研究了KOH活化剂用量对石墨烯多孔结构和电容性能的影响规律。研究结果表明,随KOH用量增加,三维多孔石墨烯的比表面积增加,多孔结构更加发达,比容量增大。所制备的三维多孔石墨烯的比表面积最高可达2133 m~2·g~(-1),在1 mol·L~(-1) Et_4NBF_4/AN的有机电解液中于0.2 A·g~(-1)电流密度下的比容量高达108 F·g~(-1),循环和倍率性能优异。优异的电化学性能,结合简单的制备工艺,使得这种方法制备的三维多孔石墨烯成为极具应用前景的超级电容器电极材料。  相似文献   

9.
以石油焦为原料,KOH为活化剂,经微波加热活化,制备出了超级电容器用高性能活性炭电极材料。以制得的活性炭制成的电极片为电极,6mol/L的KOH溶液为电解液,组装了模拟电容器。研究了加热时间和碱焦比对活性炭比表面积及电容器性能的影响。研究表明:在KOH与石油焦按3∶1的质量比混合,微波辐射时间为15min时,制备的活性炭比表面积达2683m2/g,模拟电容器单电极比电容量达361F/g。  相似文献   

10.
利用水热法分别制备了MnO_2纳米线和纳米球。通过场发射扫描电子显微镜(FESEM)和X射线衍射仪(XRD)对两种形貌的MnO_2粉末进行表征,并使用循环伏安法(CV)、恒流充放电(GCD)和交流阻抗测试研究MnO_2电极材料在KOH和Na_2SO_4电解液下的电化学行为。结果表明,MnO_2纳米球形成机理为:先溶解后聚集并呈各向异性生长状态。在2 mol/L KOH或3 mol/L Na_2SO_4电解液中的MnO_2纳米球性能均优于纳米线,比电容分别为756.44 F/g和333.65 F/g;与MnO_2纳米线对比,MnO_2纳米球的比电容分别提高了59.06%和52.14%。经分析可知,MnO_2材料与电解液之间存在一定的匹配性关系。  相似文献   

11.
以炭化椰壳为原料,微波活化制备出高比电容量双电层电容器用活性炭。考察了微波辐射时间、起电弧时间,以及KOH与炭化椰壳配比对活性炭比电容量的影响。结果表明,在微波辐射时间为7min,起电弧时间为5min,KOH与炭化料质量比约为3∶1时,比电容量达266.71F/g。以该活性炭作电极的双电层电容器具有良好的充放电性能和循环稳定性能。  相似文献   

12.
氧化改性Ni(OH)2的电化学电容特性研究   总被引:3,自引:1,他引:2  
为获得高比电容量电极材料,制备出氧化改性Ni(OH)2,并对样品进行了XRD和XPS分析,通过恒流充放电测试分析了氧化改性Ni(OH)2/活性炭非对称型电化学电容器的电容特性,讨论了活性炭与氧化改性Ni(OH)2质量比对比电容量的影响。结果表明,氧化改性Ni(OH)2电容器性能稳定,稳定工作电压可达1.60V;在活性炭与氧化改性Ni(OH)2质量比约为2.7时,比电容量高达93.78F/g。  相似文献   

13.
双电层电容器中单/双面涂覆电极的电化学性能比较   总被引:1,自引:1,他引:0  
以KOH为活化剂,采用微波加热石油焦一步法制备了微孔活性炭。采用循环伏安和恒流放电法研究了双电层电容器中单面和双面涂覆的活性炭电极电化学性能。活性炭的亚甲基蓝吸附值为247.8mg·g–1,N2吸/脱附结果表明,活性炭比表面积为1037m2·g–1,微孔孔容为0.54m3·g–1。结果表明,1000次循环后,双面涂覆电极的比容、比容保持率和两电极电容器的能量密度保持率分别为227.3F·g–1、96.6%和97.4%均高于单面涂覆电极;而双面涂覆电极的内阻仅为0.42Ω,小于单面涂覆电极的内阻。  相似文献   

14.
改性活性炭双电层电容器电极材料研究   总被引:2,自引:2,他引:0  
用氢氧化钾对普通活性炭活化改性,比表面积和总孔容由806m2/g和0.411cm3/g分别增加到1168m2/g和0.577cm3/g。用该材料制成硬币型双电层电容器,经测定炭材料比电容高达203.5F/g,提高了64%;等效串联内阻仅为1.94?,大电流放电时容量衰减小于10%。其突出优点是体积与面积比电容高达109.6F/cm3和17.4×10–6F/cm2。研究发现孔径分布于1.4~2.78nm的超微孔和小中孔,有利于电解质离子形成双电层而提高炭材料的电容量。  相似文献   

15.
采用化学沉淀法制备了MnO2/13X分子筛复合材料,并使用XRD对其结构进行了分析。在浓度为1mol·L–1、电位为–0.10~+0.58V的KOH电解液中,应用循环伏安和恒流充放电技术对该复合材料的电化学电容性能进行了研究。结果显示:在制得的MnO2/13X复合材料中,MnO2具有无定形结构。当MnO2质量分数为30%时,在100mA·g–1电流密度下,该复合材料的比电容达到134F·g–1,电化学电容性能良好。  相似文献   

16.
掺CeO2纳米MnO2非对称超级电容器的研究   总被引:2,自引:0,他引:2  
采用化学共沉淀法制备出超级电容器用掺CeO2的MnO2电极材料,通过XRD、SEM对样品进行了表征,研究了掺杂量对MnO2电极稳定性能的影响。结果表明,产物主相为α-MnO2,粒度分布较均匀,在50~100nm;在6mol/L的KOH电解液中,该掺杂MnO2电极材料具有优良的电容行为和循环稳定性能。当掺CeO2量为10%(与MnO2的质量比)时,在电流密度为250mA/g时,比电容量达257.68F/g;循环500次,容量仅衰减1.18%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号